
Structure-Guided Solution of Constrained
Horn Clauses

Omer Rappoport(B) , Orna Grumberg , and Yakir Vizel

Technion - Israel Institute of Technology, Haifa, Israel
{omer.r,orna,yvizel}@cs.technion.ac.il

Abstract. We present StHorn, a novel technique for solving the satis-
fiability problem of CHCs, which works lazily and incrementally and is
guided by the structure of the set of CHCs. Our technique is driven by
the idea that a set of CHCs can be solved in parts, making it an easier
problem for the CHC-solver. Furthermore, solving a set of CHCs can
benefit from an interpretation revealed by the solver for its subsets. Our
technique is lazy in that it gradually extends the set of checked CHCs, as
needed. It is incremental in the way it constructs a solution by using sat-
isfying interpretations obtained for previously checked subsets. In order
to capture the structure of the problem, we define an induced CHC hyper-
graph that precisely corresponds to the set of CHCs. The paths in this
graph are explored and used to select the clauses to be solved.

We implemented StHorn on top of two CHC-solvers, Spacer and
Eldarica. Our evaluation shows that StHorn complements both tools
and can solve instances that cannot be solved by the other tools. We con-
clude that StHorn can improve upon the state-of-the-art in CHC solving.

Keywords: Constrained Horn Clauses · CHC-SAT · Verification

1 Introduction

Constrained Horn Clauses (CHCs) is a fragment of First Order Logic (FOL) that
has gained much attention in recent years. One main reason for the rising interest
in CHCs is the ability to reduce many verification problems to satisfiability of
CHCs [5,7,11,17,18,20,25,33]. For example, program verification can naturally
be described as the satisfiability of CHCs modulo a background theory such as
Linear Integer Arithmetic [7]. CHC-solvers can be used as the back-end for a
variety of verification tools [15,19,27,30], separating the generation of verifica-
tion conditions from the decision procedure that determines their correctness.

In this paper we present StHorn, a novel, structure-guided, lazy and incremen-
tal technique for solving the satisfiability problem of CHCs modulo a background
theory. Our technique is driven by the idea that a set of CHCs can be solved
in parts, making each sub-problem easier to solve. Furthermore, solving a set

This research is partially funded by the Israel Science Foundation (ISF), grant no.
2875/21.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 117–138, 2023.
https://doi.org/10.1007/978-3-031-45332-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_6&domain=pdf
http://orcid.org/0009-0003-1518-4033
http://orcid.org/0009-0005-9682-3312
http://orcid.org/0000-0002-5655-1667
https://doi.org/10.1007/978-3-031-45332-8_6

118 O. Rappoport et al.

of CHCs can benefit from satisfying interpretations, which are revealed when
handling its subsets.

StHorn uses an existing CHC-solver [12,14,23,24,28,34] as a “black-box”.
Given a set of CHCs Π, it chooses a subset of CHCs and tries to solve it using the
existing CHC-solver. If it finds that the subset is unsatisfiable, then it concludes
the entire set of CHCs is unsatisfiable. Otherwise, if a satisfying interpretation
is found, StHorn extends the subset of CHCs, adapts the satisfying interpreation
to be consistent with the new extended subset, and reinvokes the CHC-solver
on the extended subset of CHCs. This process continues iteratively until either
a subset is found to be unsatisfiable, or a satisfying interpretation is found for
the entire set of CHCs Π.

There are three pillars to StHorn: (i) the structure-guided selection of CHC
subsets to be processed; (ii) the incremental usage of satisfying interpretations
when solving the different subsets of CHCs; and lastly (iii) the lazy processing of
CHCs only when needed (when none of the processed subsets is unsatisfiable).

In order to capture the structure of the problem, we define an induced CHC
hypergraph that precisely corresponds to the set of CHCs and depicts the depen-
dencies between them. We present an algorithm for finding the shortest nontrivial
hyperpath in the graph. This algorithm is used for selecting the CHC subsets to
be solved, resulting in minimal clause addition at each iteration. Our selection
strategy is based on the understanding that solving small subsets is often easier
and can be advantageous to the overall solution.

To be incremental, StHorn maintains an interpretation that is injected into
the CHC-solver as a starting point at each iteration, enabling the solver to search
in a reduced state space. When a subset of CHCs is extended, it must be ensured
that the existing satisfying interpretation is consistent with the extended subset.
To this end, StHorn implements an amending procedure, which receives a set of
CHCs and an interpretation, which might not satisfy all of them, and amends
the interpretation such that it becomes consistent with the extended subset.

The combination of the choice of the examined subsets and the way in which
the interpretation is amended defines how StHorn guides the search for a satis-
fying interpretation. Intuitively, StHorn guides the search based on the structure
of the CHCs as reflected by the induced CHC hypergraph.

We implemented StHorn on top of two CHC-solvers: Spacer [28] and Eldar-
ica [24]. For evaluation, we used the CHC-COMP’22 [13] benchmarks, and com-
pared StHorn against Spacer and Eldarica. Our evaluation shows that StHorn
complements both tools and can solve instances that cannot be solved by the
other tools. We conclude that StHorn can improve upon the state-of-the-art in
CHC solving.

The main contributions of this work are as follows:

– We develop an efficient technique for solving CHCs, which considers the struc-
ture of the CHCs during the search for a solution.

– The search for a solution is done incrementally, based on interpretations
learned in previous iterations.

Structure-Guided Solution of CHCs 119

– We implemented a generic framework that can be used with any existing
CHC-solver. In addition, we implemented two instances of StHorn: one using
Spacer and the other that uses Eldarica and evaluated their performance.
Our implementation is open-source and publicly available.

2 Preliminaries

We consider first-order logic (FOL) modulo a background theory T and denote
it by FOL(T). We adopt the standard notation and terminology, where FOL(T)
is defined over a signature Σ that consists of constant, predicate and function
symbols, some of which may be interpreted by T . The set of uninterpreted
predicate symbols in Σ is denoted by P. From now on, we fix the background
theory T .

A p-formula is an application of the form p(t1, . . . , tn) for some predicate
symbol p ∈ P and first-order terms ti. Given a set S of symbols, a formula
ϕ is S-free if no S symbols occur in ϕ. We write ϕ[X] for a formula ϕ with
free variables X. We use � and ⊥ to represent the constant symbols True and
False, respectively.

2.1 Constrained Horn Clauses

Definition 1. A Constrained Horn Clause (CHC or clause) is a FOL formula
π of the form ∀X.(B[X] → H[X]), where

– H[X], denoted head(π), is either a p-formula for some p ∈ P, or is P-free.
– B[X], denoted body(π), is a formula either of the form ψ1∧· · ·∧ψk ∧ϕ or ϕ,

where each ψi is a p-formula for some p ∈ P, and ϕ is a P-free constraint.

A clause is called a query if its head is P-free; otherwise, it is called a rule.
A rule with P-free body is called a fact. A clause is linear if its body contains at
most one predicate symbol from P; otherwise, it is non-linear. We refrain from
explicitly adding the universal quantifier when the set of variables is clear from
the context.

A set of CHCs Π is satisfiable if there exists an interpretation of the unin-
terpreted predicate symbols in P such that each CHC π in Π is valid under the
interpretation (modulo T). CHC-solvers attempt to determine the satisfiability
of a set of CHCs by searching for a satisfying interpretation that is definable in T .
Such an interpretation is called a T -interpretation. Formally, a T -interpretation
I associates every p ∈ P with a P-free formula I(p) over the signature Σ of
FOL(T). Given a CHC π and a T -interpretation I, we denote by I(π) the for-
mula obtained after substituting every p-formula that occurs in π with I(p). A
T -interpretation I satisfies a CHC π, denoted I |= π, if I(π) is valid (modulo
T). A T -interpretation I satisfies a set of CHCs Π, denoted I |= Π, if I |= π
for every π ∈ Π. Note that, if there exists a satisfying T -interpretation for Π,
then Π is satisfiable. The converse, however, may not hold due to the limited
expressiveness of FOL(T). Henceforth, we will only consider T -interpretations
and refer to them simply as interpretations.

120 O. Rappoport et al.

Definition 2 (The CHC-SAT Problem). Given a set of CHCs Π, determine
whether Π is satisfiable.

Note that, if Π is unsatisfiable, then there exists a refutation (a proof of
unsatisfiability) in the form of a ground derivation of ⊥ [8]. Along with deter-
mining whether Π is satisfiable, we are often interested in finding a solution to
it. A solution for a set of CHCs Π is either a satisfying interpretation, when Π
is satisfiable, or a ground refutation, when Π is unsatisfiable.

Finally, for a FOL formula ψ, we denote by Pψ the set of all uninterpreted
predicate symbols that occur in ψ. Given a set of FOL formulas Ψ , PΨ denotes
the set

⋃
ψ∈Ψ Pψ. Note that an interpretation for Π is defined over PΠ .

Example 1. As an example, consider the following schematic set of CHCs over
the set {p1, p2, p3, p4} of uninterpreted predicate symbols:

� → p1(x) (1)
p1(x) ∧ ϕ2(x, y) → p2(x, y) (2)
p1(x) ∧ ϕ3(x, z) → p3(z) (3)

p1(x) ∧ p1(y) ∧ p3(z) ∧ ϕ4(x, y, z) → p4(x, y) (4)
p4(x, y) ∧ ϕ5(x, y, z) → p2(x, z) (5)

p2(x, z) ∧ ϕ6(x, z) → ⊥ (6)

It consists of 5 rules (Clauses 1–5) and a query (Clause 6). Clause 1 is a fact and
Clause 4 is nonlinear, since it includes more than one predicate symbol in its
body. Note that, the predicate symbol p1 occurs twice in the body of Clause 4.
However, Pbody(4) is the set {p1, p3} (rather than a multiset), where repetitions
are ignored.

2.2 Hypergraphs and Hyperpaths

The definitions in this subsection resemble [1]. A directed hypergraph G = (V,E)
consists of a nonempty set of nodes V and a set of hyperedges E. A hyperedge
connects several source nodes to a single target node. It is represented by a pair
e = (S, t), where S ⊆ V is the (nonempty) set of source nodes of e, denoted
source(e) and t ∈ V is the target node of e, denoted target(e).

Definition 3 (Nontrivial Hyperpath). A nontrivial hyperpath in G =
(V,E) from a set of sources S ⊆ V to a target t ∈ V is a nonempty set of
hyperedges ES,t ⊆ E with the following property: the hyperedges in ES,t can be
ordered as a vector (e1, . . . , ek) where,

1. source(ei) ⊆ (S ∪ {target(e1), . . . , target(ei−1)}) for every ei in ES,t.
2. target(ek) = t.
3. There is no nonempty E′ ⊂ ES,t that satisfies 1 and 2.

Structure-Guided Solution of CHCs 121

vinit vp1 vp3

vp4vp2verr

e1 e3

e2

e6

e4

e5

Fig. 1. A hypergraph example.

According to the above definition, a hyperpath must include at least one
hyperedge. We therefore refer to such hyperpaths as nontrivial. Note that a
hyperpath with an empty set of hyperedges (trivial hyperpath) is possible in [1],
however, in our context we do not consider such hyperpaths. In the sequel,
hyperpaths are always nontrivial.

Let ES,t be a hyperpath form S to t. Due to the minimality of a hyperpath
(condition 3 above), it holds that for every two different hyperedges ei, ej ∈ ES,t,
target(ei) �= target(ej). This and Definition 3 imply the following property.

Property 1. Let ES,t be a hyperpath form S to t and let (X, t) be the unique
hyperedge in ES,t leading to t. Then, ES,t can be written as follows:

ES,t = {(X, t)} ∪ (
⋃

x∈(X\S)

ES,x),

where for every x ∈ (X \S), ES,x is the hyperpath from S to x included in ES,t.

Next, we add weights to the hyperedges of a hypergraph G = (V,E). This
is done with a weight function w : E → N, which associates a non-negative
integer with each hyperedge. A weight function w for hyperedges can be lifted
to a weight function ŵ for hyperpaths, as follows.

Definition 4 (Weight Function for Hyperpaths). Let ES,t be a hyperpath
from S to t and let (X, t) be the unique hyperedge in ES,t leading to t. According
to Property 1, ES,t = {(X, t)} ∪ (

⋃
x∈(X\S) ES,x). The weight function ŵ for

ES,t is defined inductively in the following way:

ŵ(ES,t) = w((X, t)) +
∑

x∈(X\S)

ŵ(ES,x)

That is, the weight of a hyperpath is defined as the sum of the weight of its last
hyperedge with the weights of the hyperpaths leading to each of its sources.1

1 This weight function is called the traversal cost in [1]. For this weight function,
computing the shortest nontrivial hyperpath (see Sect. 4) is polynomial.

122 O. Rappoport et al.

Example 2. Consider the hypergraph in Fig. 1 and the hyperpath E{vinit},vp4
=

{e1, e3, e4}. Assume the weight function for each edge is the number of its sources:
w(ei) = 1 for each i �= 4 and w(e4) = 2. The weight of this hyperpath is

ŵ(E{vinit},vp4
) = w(e4) + ŵ(E{vinit},vp1

) + ŵ(E{vinit},vp3
)

= w(e4) + ŵ(E{vinit},vp1
) + (w(e3) + ŵ(E{vinit},vp1

))

= w(e4) + w(e1) + (w(e3) + w(e1)) = 2 + 1 + (1 + 1) = 5.

Notice that the weight of e1 is considered twice in the weight of E{vinit},vp4
since

e1 belongs to both E{vinit},vp1
= {e1} and E{vinit},vp3

= {e1, e3}.

3 Structure-Guided, Lazy and Incremental CHC Solving

In this section, we present StHorn - a structure-guided, lazy and incremental tech-
nique for CHC-solving. Given a set Π of CHCs, StHorn constructs a solution for
Π by iteratively examining a monotone sequence of its subsets. It starts by choos-
ing a subset of clauses Δ ⊆ Π, and iteratively adds clauses to it, as needed. If at
any point, the subset becomes unsatisfiable, StHorn halts and returns UNSAT.
Otherwise, if a subset of clauses is satisfiable, StHorn tries to extend the satisfy-
ing interpretation for the subset into an interpretation for Π in an incremental
fashion. To this end, StHorn maintains an interpretation I that is injected into
the CHC-solver as a starting point at each iteration, enabling the solver to search
for a solution within a reduced state space. In order for the solver to return a
sound solution when it is invoked to solve the current Δ, I must satisfy all rules
in Δ. The following definition captures this requirement.

Definition 5 (Rule-Satisfiability). Let Δ be a set of CHCs, and I be an
interpretation. I rule-satisfies Δ, denoted I |=r Δ, if I |= π for every rule
π ∈ Δ. Note that in this case, I may not satisfy some of the queries in Δ.

In what follows, we assume that the underlying used CHC-solver can receive
a set Δ of CHCs and an initial interpretation I for the predicates in PΔ. Further,
we assume that the solver returns a sound solution whenever I |=r Δ. We leave
the discussion on this assumption to the end of the section.

In Sect. 6.1 we show that, in fact, the StHorn technique can be implemented
on top of any existing CHC-solver. This includes solvers that cannot receive
initial interpretations for the predicates.

We start with a simple, high-level description of the technique. In the fol-
lowing sections, we go into the fine-grained details of the implementation. The
pseudo-code of StHorn appears in Algorithm 1. The specifications of the algo-
rithm and of its internal procedures are summarized in Fig. 2.

StHorn receives a set Π of CHCs. As mentioned, it maintains a subset of
clauses Δ ⊆ Π and an interpretation I that rule-satisfies Δ. StHorn starts by
calling Select (line 1) and initializing Δ to be some subset of Π (i.e., Δ ⊆ Π).
Next, it initializes the interpretation I of every uninterpreted predicate that

Structure-Guided Solution of CHCs 123

Algorithm 1. StHorn(Π)
Input: A set Π of CHCs
Output: A solution to Π
1 Δ ← Select(Π, ∅)
2 I(p) ← �, ∀p ∈ PΔ

3 while � do
4 (res, I′, R) ← Solve(Δ, I)
5 if res = UNSAT then
6 return (UNSAT, −, R)
7 else � i.e., res = SAT
8 if Δ = Π then
9 return (SAT, I′, −)

10 else � i.e., Δ ⊂ Π
11 δ ← Select(Π, Δ)
12 Δ ← Δ ∪ δ
13 I ← Amend(I′, Δ, δ)
14 end if
15 end if
16 end while

occurs in Δ to � (line 2). Note that after initialization, I |=r Δ (see the proof
of Theorem 1).

StHorn then moves to the main loop (line 3). Every iteration begins by check-
ing the satisfiability of Δ by invoking the underlying CHC-solver with a call to
Solve (line 4). Consider the case in which Solve returns UNSAT and a ground
refutation R for Δ. Since Δ consists entirely of clauses from Π, R is also a
refutation for Π. Thus, StHorn returns UNSAT and R (line 6). Now, consider
the case in which Solve returns SAT and a satisfying interpretation I ′ for Δ. If
Δ is equal to Π, StHorn returns SAT and I ′ as the satisfying interpretation of
Π (line 9). Otherwise, Δ is a strict subset of Π. As a preparation for the next
iteration, Δ is extended and the interpretation is amended accordingly. First,
the method Select selects a set of fresh clauses δ from Π \ Δ (line 11) that are
added to Δ (line 12). We require that at least one clause is selected (i.e., δ �= ∅)
to guarantee progress. At this stage, I ′ may no longer be a rule-satisfying inter-
pretation with respect to the extended Δ. As a remedy, StHorn invokes Amend
(line 13), which modifies I ′ in order to make it rule-satisfying for Δ before the
subsequent call to Solve.2

Remark 1 (Termination of StHorn). In general, the CHC-SAT problem is unde-
cidable, so termination is not guaranteed. However, if every call to Solve made
by StHorn terminates, then StHorn terminates as well. The reason for this is the
requirement that Select must always return at least one fresh clause from Π.

2 The underlying CHC-solver may also return UNKNOWN. This case can be han-
dled similarly to the case where SAT is returned and is omitted for simplicity of
presentation.

124 O. Rappoport et al.

(res, I′, R) ← StHorn(Π)
Requires: �
Ensures: (res = SAT ⇒ I′ |= Π) and

(res = UNSAT ⇒ R is a ground refutation of Π)

(res, I′, R) ← Solve(Δ, I)
Requires: I |=r Δ
Ensures: (res = SAT ⇒ I′ |= Δ) and

(res = UNSAT ⇒ R is a ground refutation of Δ)

δ ← Select(Π, Δ)
Requires: Δ ⊆ Π
Ensures: δ ⊆ Π \ Δ and (Δ ⊂ Π ⇒ δ �= ∅)

I ← Amend(I′, Δ, δ)
Requires: δ ⊆ Δ and I′ |= Δ \ δ
Ensures: I |=r Δ

Fig. 2. Specifications for the StHorn Algorithm and its Procedures

Theorem 1 (Correctness of StHorn). Let Π be a set of CHCs given to
StHorn. If StHorn returns SAT (UNSAT), then Π is satisfiable (unsatisfiable).

Proof. First, we show that at every call to Solve, I |=r Δ. When Solve is
called for the first time, following the initialization of I, it holds that I(p) = �
for all p ∈ PΔ. Let π := p1 ∧ · · · ∧ pk ∧ ϕ → q be a rule in Δ. The formula
I(q), which is �, is implied by any other formula, and in particular, it is implied
by I(p1) ∧ · · · ∧ I(pk) ∧ ϕ. Therefore, I(π) is valid, i.e., I |= π. Accordingly,
I |=r Δ. In later iterations, Solve is called after Amend, which ensures I |=r Δ
as well. Therefore, the requirement in the specifications of Solve holds in every
invocation.

Assume StHorn returns SAT. From the definition of the algorithm, it follows
that Solve was invoked at the last iteration with Π, and that it returned SAT
and I ′. By the specifications of Solve, it is guaranteed that Π is indeed satisfiable
and that I ′, which is returned by StHorn, satisfies Π. Finally, assume StHorn
returns UNSAT. From the definition of StHorn, it follows that Solve was invoked
at the last iteration with a subset Δ ⊆ Π, and that it returned UNSAT and R.
By the specifications of Solve, it is guaranteed that Δ is indeed unsatisfiable
and that R, which is returned by StHorn, is a ground refutation for Δ. Since Δ
consists entirely of clauses from Π, R is also a ground refutation for Π.
�

Requiring Rule-Satisfiablity. We require the CHC-solver to return a sound
solution, given a set of CHCs and a rule-satisfying interpretation. This is essen-
tial, since if there exists a rule that is not satisfied by the injected interpretation,
the solver may return an incorrect result. As an example, consider the following
unsatisfiable set Π of CHCs: {x = 0 → p(x), p(x)∧x = 0 → ⊥}. When given an

Structure-Guided Solution of CHCs 125

interpretation that is not rule-satisfying, such as the one that maps p(x) to ⊥,
the CHC-solver might conclude that Π is satisfiable after examining the query
and observing that it is satisfied by the injected interpretation.

Rule-satisfiablity is also important in that, whenever a set of CHCs is sat-
isfiable, any rule-satisfying interpretation for it can be strengthened into a sat-
isfying one.3 For example, consider the following satisfiable set Π ′ of CHCs:
{x = 0 → p(x), p(x) ∧ x �= 0 → ⊥}. Π ′ is clearly satisfied by the interpretation
that maps p(x) to the formula x = 0. Now, consider the interpretation that maps
p(x) to x ≥ 0. While this rule-satisfying interpretation does not satisfy Π ′, as
it does not satisfy its query, it can be strengthened by the solver into the above
satisfying interpretation. Note also, that supplying the solver with this initial
interpretation narrows its search space, as otherwise it would have began with
the interpretation that maps p(x) to �.

4 Structure-Guided Selection of CHCs

Recall that a CHC is of the form p1 ∧ · · · ∧ pk ∧ ϕ → q (the variable vectors
are omitted for readability). For brevity, we denote such a clause by the triple
〈{p1, . . . , pk}, ϕ, q〉. Similarly, a fact and a query are denoted by 〈∅, ϕ, q〉 and
〈{p1, . . . , pk}, ϕ,⊥〉, respectively.4 It should be noted that a clause may contain
several occurrences of the same predicate symbol in its body (see, for example,
rule 4 of Example 1). For the purpose of guiding the CHC selection, it is sufficient
to refer to the predicates appearing in the clause body as a set rather than a
multiset. That is, repetitions of predicate symbols in the same body are ignored.
In what follows, Π is the given set of CHCs.

There are two key ingredients that affect the efficiency of StHorn: (1) the
choice of clauses to be examined at each iteration; and (2) the incremental con-
struction of the interpretation. The first task is performed by the procedure
Select, which we describe in this section. The second task is performed by the
underlying CHC-solver and the procedure Amend, which we describe in Sect. 5.

For capturing the structure of the problem, it is useful to model Π as a
directed hypergraph with parallel edges, whose vertices and hyperedges represent
the predicate symbols and clauses, respectively.

Definition 6 (Induced CHC Hypergraph). Let Π be a set of CHCs. The
induced CHC hypergraph of Π is a directed hypergraph GΠ = (VΠ , EΠ), where

VΠ = {vp | p ∈ PΠ} ∪ {vinit, verr}
EΠ = {({vinit}, vq) | 〈∅, ϕ, q〉 ∈ Π} ∪

{({vp1 , . . . , vpk
}, vq) | 〈{p1, . . . , pk}, ϕ, q〉 ∈ Π} ∪

{({vp1 , . . . , vpk
}, verr) | 〈{p1, . . . , pk}, ϕ,⊥〉 ∈ Π}

3 Strengthening can be achieved as follows: if I |=r Π and I′ |= Π then the interpre-
tation that maps every p ∈ PΠ to I(p) ∧ I′(p) satisfies Π.

4 We assume, w.l.o.g., that the head of a query is ⊥.

126 O. Rappoport et al.

There is a correspondence between the hypergraph (vertices and hyperedges)
and the set of CHCs (predicates and clauses). More precisely, a vertex vp ∈ VΠ

corresponds to the predicate p ∈ PΠ , and the vertices vinit and verr correspond
to � and ⊥, respectively. Also, an edge eπ ∈ EΠ corresponds to the clause
π ∈ Π.5 We assume that all the edges of the CHC hypergraph are on a hyperpath
from vinit to verr (see Definition 3). Otherwise, such edges can be removed from
the graph without changing the solution of Π.

Example 3. The hypergraph depicted in Fig. 1 is exactly the induced CHC
hypergraph for the set of clauses of Example 1. Note that, Clause 4 is repre-
sented by the hyperedge e4, whose set of sources is {vp1 , vp3}. As mentioned
above, for our algorithms, there is no need to remember the repetitions of the
predicate symbol p1 in the body of Clause 4.

The procedure Select is iteratively called by StHorn in order to select the
subsets Δ ⊆ Π to be examined. For this purpose, it explores paths in the induced
CHC hypergraph. Our approach is aimed at finding a solution to Π lazily and
incrementally, so Select chooses small subsets of clauses that correspond to
shortest nontrivial hyperpaths in the graph. The proposed selection strategy is
based on the understanding that solving small subsets is often easier and can be
advantageous to the overall solution.

Recall that there is no restriction on the selected subsets, except that they
must include at least one fresh clause from Π to guarantee progress. Nevertheless,
we further require Select to produce only subsets in which all clauses are on
a hyperpath from vinit to verr. Otherwise, if there exists a node vp which is
not reachable from vinit, then there exists a trivial interpretation that assigns
⊥ to p. Similarly, if verr is not reachable from vp, then there exists a trivial
interpretation that assigns � to p.

We start by presenting the algorithm ShortNt for finding the shortest non-
trivial hyperpath from a set of sources U to each node in the graph. This algo-
rithm is a modification of the algorithm presented in [3,4], for finding the shortest
hyperpath in a directed, weighted hypergraph, from a given node to each of the
nodes in the graph. Our algorithm is different from the above in two ways. First,
the shortest path starts at a given set of source nodes U . Second, we search
for only nontrivial hyperpaths. That is, hyperpaths that consist of at least one
hyperedge.

Algorithm ShortNt, depicted in Algorithm 2, gets as input a hypergraph
G = (V,E), a weight function w : E → N and a source set U ⊆ V . It returns a
map Dist : V → N ∪ {∞}, which associates with each node v the weight of the
shortest, nontrivial hyperpath EU,v from U to v (i.e., ŵ(EU,v)). It also returns a
map Last : V → E∪{null}, which associates with each node v, the hyperedge e
on EU,v for which target(e) = v. If v is not reachable from U along a nontrivial

5 In fact, the induced CHC hypergraph may include parallel hyperedges originating
from two CHCs that differ only in their constraints. While we support such a case,
we omit it here for simplicity of presentation.

Structure-Guided Solution of CHCs 127

Algorithm 2. ShortNt(G,w,U)
Input: A hypergraph G = (V, E), a hyperedge weight function w : E → N and a

source set U ⊆ V
Output: A map Dist : V → N ∪ {∞} and a map Last : V → E ∪ {null}

1 Count(e) ← |S|, ∀e = (S, t) ∈ E
2 Dist(v) ← ∞, ∀v ∈ V
3 Last(v) ← null, ∀v ∈ V
4 Q ← ∅
5 for all v ∈ U do
6 Visit(v)
7 end for
8 while Q �= ∅ do
9 v ← arg minu∈Q Dist(u)

10 Q ← Q \ {v}
11 Visit(v)
12 end while
13 return (Dist, Last)

Visit(v)
14 for all e = (S, t) ∈ E s.t. v ∈ S do
15 Count(e) ← Count(e) − 1
16 if Count(e) = 0 then
17 D ← w(e) + Σv∈(S\U)Dist(v)
18 if D < Dist(t) then
19 Dist(t) ← D
20 Last(t) ← e
21 Q ← Q ∪ {t}
22 end if
23 end if
24 end for

hyperpath, then the values Dist(v) = ∞ and Last(v) = null are returned.
Initially, Dist(v) = ∞ and Last(v) = null, for every v ∈ V (lines 2, 3).

In addition to Dist and Last, ShortNt maintains a map Count : E → N,
such that for each hyperedge e, Count(e) is the number of sources of e that
have not been visited so far. Count(e) is initialized to |source(e)| (line 1). It is
decremented by 1 whenever a source node of e is visited (line 15). Only when it
is set to 0, the hyperedge e is processed (lines 16–21). ShortNT also maintains a
set Q, which contains the nodes in V that are yet to be processed.

ShortNT first processes all source nodes v ∈ U (lines 5–7). It goes over
all edges e for which v is a source (line 14) and decrements Count(e). If
Count(e) is now 0, meaning that all its sources have already been visited, then
Dist(target(e)) and Last(target(e)) are updated. This is done when a shorter
hyperpath to target(e), containing e, is found. In this case, target(e) is added
to Q (lines 16–21). As long as Q is not empty, a node v with minimal Dist(v)
is removed from Q and is processed (lines 8–11).

Remark 2 (Complexity of ShortNt). By a similar argument to the correctness
proof of Dijkstra’s shortest path algorithm, we can show that ShortNt inserts
every node to Q and processes it at most once. Consequently, the algorithm is
polynomial in the size of the hypergraph.

Lemma 1 (Correctness of ShortNT). Given a graph G = (V,E), a weight
function w and a source set U , then for every node v ∈ V reachable from U ,
ShortNT returns Dist(v) and Last(v) so that Dist(v) is the weight of the short-
est, nontrivial hyperpath EU,v from U to v, and Last(v) is the edge e in EU,v

such that target(e) = v.

128 O. Rappoport et al.

Algorithm 3. Select(Π,Δ)
Input: A set Π of CHCs and a subset Δ ⊆ Π
Output: A subset δ ⊆ Π \ Δ such that δ �= ∅ if Δ ⊂ Π
1 let GΠ\Δ = (VΠ\Δ, EΠ\Δ)
2 Reach ← {vp ∈ VΠ\Δ | p ∈ PΔ}
3 w(e) ← |S|, ∀e = (S, t) ∈ EΠ\Δ

4 (Dist, Last) ← ShortNt(GΠ\Δ, w, {vinit} ∪ Reach)
5 v ← arg minu∈Reach∪{verr} Dist(u)
6 Opt ← {v}
7 δ ← ∅
8 while Opt �= ∅ do
9 let u ∈ Opt

10 Opt ← Opt \ {u}
11 if u /∈ ({vinit} ∪ Reach) then
12 e ← Last(u)
13 δ ← δ ∪ {π(e)}
14 Opt ← Opt ∪ source(e)
15 end if
16 end while
17 return δ

Next, we describe the procedure Select, given in Algorithm 3. It gets as input a
subset of clauses Δ ⊆ Π and explores the graph GΠ\Δ. It returns a set δ ⊆ Π\Δ,
which is nonempty if Δ is a strict subset of Π. Select starts by initializing a set
of nodes Reach, which consists of all nodes in GΠ\Δ, corresponding to predicate
symbols that appear in Δ (line 2). Next, it sets the weight of each hyperedge
to the number of its sources (line 3). It now computes Dist and Last by calling
ShortNt on the graph GΠ\Δ, with weights w as defined above, and the set of
sources {vinit} ∪ Reach (line 4). Note that, any node in the graph originating
from the previously processed set Δ is now a source for ShortNt.

From all shortest paths computed by ShortNt, Select chooses the shortest
among those whose final target is a node v in either Reach or {verr} (line 5).
Thus, the chosen path EH,v starts at H = {vinit} ∪ Reach and ends in v ∈
({verr} ∪ Reach). In lines 6–16, the chosen path is traversed backwards from
v, producing the set of hyperedges on it and accumulating their corresponding
clauses in δ (line 13). Note that, π(e) in line 13 returns the clause corresponding
to the hyperedge e.

Lemma 2 (Correctness of Select). Given a set Π of CHCs and a subset
Δ ⊆ Π, Select returns a subset δ ⊆ Π\Δ, which is nonempty if Δ ⊂ Π.

5 Ensuring Rule-Satisfiability

In this section, we describe the procedure Amend. First, we describe a simplified
version of the procedure, and then present two modifications that can enhance
its performance (Sects. 5.1 and 5.2).

Structure-Guided Solution of CHCs 129

Algorithm 4. Amend(I ′,Δ, δ)
Input: A set Δ of CHCs, a subset δ ⊆ Δ and an interpretation I′ that satisfies Δ \ δ
Output: An interpretation I that rule-satisfies Δ
1 I(p) ← I′(p), ∀p ∈ PΔ\δ

2 I(p) ← �, ∀p ∈ (Pδ \ (PΔ\δ))
3 Q ← {π ∈ δ | head(π) �= ⊥}
4 while Q �= ∅ do
5 let π = 〈X, ϕ, q〉 ∈ Q
6 Q ← Q \ {π}
7 (res, −, −) ← Solve({I(π)}, −)
8 if res = UNSAT then
9 I(q) ← �

10 Q ← Q ∪ {π′ ∈ Δ | q ∈ Pbody(π′) ∧ head(π′) �= ⊥}
11 end if
12 end while

Consider the StHorn algorithm again. At line 12, a subset δ of new clauses
from Π is added to Δ. At this point, it is no longer guaranteed that the current
interpretation I ′ rule-satisfies Δ. In order to maintain the correctness of StHorn,
I ′ must be modified before the next call to Solve. The modification of I ′ is
performed by the procedure Amend. The goal of Amend is to construct an inter-
pretation I such that I |=r Δ, while preserving as many parts as possible from
the existing interpretation I ′. This makes StHorn incremental when invoking
Solve, as it allows the CHC-solver to use previously learned information that
narrows the state space. In the worst case, predicates in I are reset back to �.

The pseudo-code of the procedure appears in Algorithm 4. Amend is given
a set Δ of CHCs, a subset δ ⊆ Δ, and an interpretation I ′ that satisfies all
clauses in Δ, except possibly the clauses in δ. The procedure constructs and
returns an interpretation I that rule-satisfies Δ. First, the interpretation of all
predicates that occur in the previous examined subset (Δ\δ) is initialized to the
current interpretation I ′ (line 1) and the interpretation of all fresh predicates
(i.e., predicates that occur in δ but not in Δ \ δ) is initialized to � (line 2). The
procedure maintains a set of clauses Q, consisting of all rules in Δ that might
not be satisfied by I. According to the specifications of the procedure, those
clauses are initially the rules in δ, so Q is initialized accordingly (line 3).

Amend then proceeds to its main loop (line 4). At each iteration, a clause
π = 〈X,ϕ, q〉 is removed from Q (lines 5–6). Then, in order to check whether
I |= π, a new CHC-SAT problem consisting of a single clause I(π) is constructed
and sent to Solve (line 7). As I(π) does not contain any uninterpreted predicate
symbol, no initial interpretation is injected into the solver. If I |= π, then nothing
has to be done and a new iteration begins. Otherwise, the interpretation of the
head predicate q is reset to � (line 9). After weakening the interpretation of q,
I may no longer satisfy all rules in Δ where q is one of the body predicates.
Therefore, any such rule is added to Q (line 10), and the forward amendment
process continues.

130 O. Rappoport et al.

Remark 3 (Termination of Amend). During the execution of Amend, a rule in
Δ is added to Q only if the interpretation of one of its body predicates is reset
to � (lines 9–10). For every predicate q ∈ PΔ, such a reset can occur at most
once, since afterward every rule with q as the head predicate is satisfied trivially.
Due to the above, and since every rule has a finite number of body predicates,
a rule is inserted into Q finitely many times. Therefore, if every call to Solve
during the execution of Amend terminates, then Amend terminates as well.

Lemma 3 (Correctness of Amend). Let Δ be a subset of CHCs, δ be a subset
of Δ, and I ′ an interpretation that satisfies Δ \ δ. Then, if Amend terminates on
Δ, δ and I ′, it returns an interpretation I that rule-satisfies Δ.

Proof. Let π = p1 ∧ · · · ∧ pk ∧ ϕ → q be a rule in Δ. Let n be the number of
iterations that the main loop of Amend was executed and
 be the last iteration
in which π was removed from Q. We denote by Ij the interpretation after the
j-th iteration of the loop. We will show that In |= π, i.e., that In(p1) ∧ · · · ∧
In(pk) ∧ ϕ ⇒ In(q).

Consider the case in which
 = 0. In this case, π was never added to Q during
the execution of Amend. First, we claim that In(pi) = I0(pi) for 1 ≤ i ≤ k. This
holds, because, if there existed an iteration in which the interpretation of some
pi was changed (line 9), then π would have been added to Q (line 10). Moreover,
by the initialization of I and Q (lines 1 and 3), we have that I0 agrees with I ′

on all predicates in PΔ\δ and that π ∈ Δ \ δ. Therefore, since it is required that
I ′ |= Δ \ δ, it holds that I0 |= π. Finally, because the interpretation of every
predicate may only be weakened in Amend, for every j1 < j2 and r ∈ PΔ it holds
that Ij1(r) ⇒ Ij2(r). Therefore, I0(q) implies In(q). To summarize, we have:

In(p1) ∧ · · · ∧ In(pk) ∧ ϕ ≡ I0(p1) ∧ · · · ∧ I0(pk) ∧ ϕ ⇒ I0(q) ⇒ In(q)

Now, consider the case in which
 > 0. Similarly, we establish the following:

In(p1) ∧ · · · ∧ In(pk) ∧ ϕ ≡ I�(p1) ∧ · · · ∧ I�(pk) ∧ ϕ ⇒ I�(q) ⇒ In(q)

Here, the first implication holds since when a CHC is removed from Q, it is
either satisfied by the current interpretation, or the interpretation of its head
predicate is set to true. Thus, In |= π as needed.
�

In the remainder of the section, we describe two modifications to Amend aimed
at extracting and preserving more information from the amended interpretation.

5.1 Exploiting Conjunctive Interpretations

The first modification to Amend exploits the shape of the interpretation formulas.
Many solvers operate on formulas in the form c1 ∧ · · · ∧ cn (e.g. Conjunctive
Normal Form). Recall that Amend checks whether I |=r Δ after the addition of
new clauses from Π. For every checked rule π = p1 ∧ · · · ∧ pk ∧ ϕ → q, it is
checked whether I(p1)∧ · · · ∧I(pk)∧ϕ → I(q) is valid. If I(q) is not implied by

Structure-Guided Solution of CHCs 131

I(p1) ∧ · · · ∧ I(pk) ∧ ϕ, then I(q) is reset to �. After this update to I, it holds
that I |= π. However, all the information previously learnt regarding q is lost.
When I(q) is a conjunction formula c1 ∧ · · · ∧ cn, we can check each conjunct
separately, i.e., for every 1 ≤ i ≤ n we check whether I(p1)∧· · ·∧I(pk)∧ϕ → ci

is valid. Then, we remove from I(q) only the conjuncts ci that are not implied.
In the worst case, no conjuncts are implied, and I(q) is reset to �. In practice,
we can often retain significant parts of the interpretation using this approach.
After applying this optimization, rules in Δ might be inserted into Q additional
times. Nevertheless, since every conjunctive interpretation has a finite number
of conjuncts, each rule is still inserted into Q a finite number of times.

5.2 Extending Existing Interpretations

In this subsection, we introduce a preliminary step that, if successful, will elimi-
nate the need to run Amend. Before amending the interpretation, one can try
to extend I ′ for the fresh predicates (i.e., predicates in Pδ \ (PΔ\δ)). For
this, we construct a new CHC-SAT problem with the following set of CHCs:
δ′ = {I ′(π) | π ∈ δ ∧head(π) �= ⊥}. δ′ is created by substituting every non-fresh
predicate (i.e., every predicate in PΔ\δ) with its I ′ interpretation in every rule
in δ. All fresh predicates remain uninterpreted.

When Amend is invoked, it first constructs δ′ and calls Solve. If δ′ is satis-
fiable, I ′ is extended for the fresh predicates according to the satisfying inter-
pretation returned by Solve. In this case, Amend halts and returns the new
interpretation without further checks. Otherwise, if δ′ is unsatisfiable, Amend is
executed as before.

6 Implementation Details and Experimental Evaluation

6.1 Implementation Details

We implemented StHorn as an open-source generic framework in C++. In addi-
tion, we implemented two instances of StHorn: one using Spacer [28] through
the C++ API of Z3’s [32]. The other uses Eldarica [24] as a CHC-solver. For
the Eldarica instance we implemented a JAVA API for Eldarica (which is
implemented in Scala). Then, we used JNI in order to invoke Eldarica (through
the JAVA API we implemented) from our C++ framework. Our implementation
is available in https://github.com/omerap/StructuralHorn.

StHorn with Spacer: We denote this instance of StHorn as StHornS . Spacer is
based on IC3/PDR [9,23,28]. Satisfying interpretations are given in Conjunctive
Normal Form (CNF), and the Z3 API allows to pre-load interpretations for the
predicates appearing in the CHCs. This is done by adding conjuncts to a given
predicate. Adding “partial” interpretations to the predicates allowed us to use
Spacer incrementally seamlessly, without modifying the set of CHCs.

https://github.com/omerap/StructuralHorn

132 O. Rappoport et al.

StHorn with Eldarica: We denote this instance of StHorn as StHornE . In con-
trast to Spacer, Eldarica is based on Predicate Abstraction, Counterexample-
Guided Abstraction Refinement (CEGAR) and Interpolation. In addition,
Eldarica’s API does not enable to load an interpretation for a predicate.
Instead, it supports an incremental usage where solving can be invoked with
a substitution map such that predicates are completely substituted with a given
formula.

For using Eldarica in StHorn, we implemented a satisfiability-preserving
transformation for CHCs. Let Π be the set of CHCs. The transformation uses
additional predicates that are added in the following way. First, we add the set
PΠ

g := {pg | p ∈ PΠ} that consists of a ghost predicate for every predicate in Π.
Then, we add the set PΠ

en := {pπ | π ∈ Π} that consists of an enable predicate
for every clause in Π. While ghost predicates have the same arity as their original
counterparts, enable predicates have 0-arity (i.e., they are uninterpreted Boolean
constants). The new set of uninterpreted predicates is PΠ ∪ PΠ

g ∪ PΠ
en.

Next, the clauses are modified such that the enable predicate pπ is added (as
a conjunct) to the body of every clause π. Then, if the body of a clause contains
a p-formula p(t1, . . . , tn), where p ∈ PΠ , the pg-formula pg(t1, . . . , tn) is added
(as a conjunct) to the body as well. In this way, StHorn can use Eldarica’s
incremental API by supplying every call to the solver with a substitution map
that substitutes every ghost predicate with its current rule-satisfying interpreta-
tion, and using the enable predicates to control what subset of clauses is being
considered (in a similar manner to enable literals in SAT).

Remark 4. Importantly, while this transformation is satisfiability-preserving and
allows StHorn to use any CHC-solver (even one that is not incremental), it is
more limiting than what the Z3 API is allowing. The main reason is that using
this method can only result in strengthening of the rule-satisfying interpreta-
tion, since the given substitutions are not modified by the solver. Both Spacer
and Eldarica employ various optimizations that can help convergence. The
above transformation may interfere with such optimizations. As an example, by
employing “global guidance” [29], Spacer can generalize a set of lemmas that
are already present in an interpretation of a predicate (during its execution).
If we would have used the above transformation with Spacer, we would have
most likely interfere with this optimization.

6.2 Experimental Evaluation

In this section, we present our experimental results. We used the CHC-COMP’22
benchmarks [13], and compared StHorn against Spacer and Eldarica. The
comparison is done with respect to the corresponding instance. Namely, StHornS

against Spacer and StHornE against Eldarica. For the comparison we used
two categories: (1) linear clauses over the theory of Linear Integer Arithmetic
(LIA), and (2) non-linear clauses over the theory of LIA. Overall, there are 499
CHC instances for the linear CHCs, and 456 non-linear CHCs instances. All
experiments were executed on a workstation with AMD EPYC 74F3, a 24-Core
CPU. Every instance was given 900 s and 8 GB of memory.

Structure-Guided Solution of CHCs 133

Table 1. Comparison of StHorn and Spacer

Benchmarks Tool Total SAT UNSAT Hard

Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

Linear CHCs Spacer 320 (7) 76.5 234 67.2 86 101.2 43 468.8

StHornS 322 (9) 67.4 234 63.4 88 78.2 45 411.2

portfolio 329 53.5 239 48.7 90 66.5 52 326.9

Non-Linear CHCs Spacer 386 (2) 60.4 276 48.8 110 88.1 68 265.4

StHornS 406 (22) 48.9 286 56.7 120 30.2 88 198.4

portfolio 408 23.8 287 30.6 121 7.7 90 100.3

In the case of Z3, to increase the reliability of the evaluation and demon-
strate that the results were not determined by random decisions made by Z3, all
experiments were executed with three different random seeds (a Z3 parameter),
and the results presented are an average of these runs.6

Table 1 and Table 2 summarize the experiments comparing StHorn with
Spacer and Eldarica, respectively. The tables present both the total number
of solved instances and the average run-time, as well as a distinction between
satisfiable and unsatisfiable instances. The reported average runtimes only con-
sider the instances that were solved by at least one of the tools (if both tools
report “unknown”, the instance is not counted). The numbers in brackets repre-
sent uniquely solved instances. In addition, both tables present results for hard
instances, which are instances where at least one of the tools required at least
60 s to solve. Lastly, the tables also present the results of a portfolio solver.
Namely, a solver that runs both variants simultaneously (StHornS and Spacer
for Table 1; StHornE and Eldarica for Table 2) and halts when one of them
terminates with a definitive result. In the following we analyze the results of
both tables, divided by linear and non-linear CHCs instances.

StHornS vs Spacer

Linear CHCs: In this category, StHornS solves two more instances than Spacer
and also performs better w.r.t. runtime (though the difference is not big). The
set of instances they solve are also different as StHornS solves 9 instances not
solved by Spacer, while Spacer solves 7 instances not solved by StHornS .

Non-Linear CHCs: On these instances, StHornS solves 20 more instances than
Spacer. As can be seen from the table, the average runtime is in favor of
StHornS . When further analyzing the results we discover that if one consid-
ers only unsatisfiable instances, not only StHornS solves more instances, it also
performs almost 3 times faster.

Portfolio: We also present the results for a portfolio solver that runs both
StHornS and Spacer simultaneously. From these results we see that the portfo-

6 We were not able to find such a parameter for Eldarica.

134 O. Rappoport et al.

Table 2. Comparison of StHorn and Eldarica

Benchmarks Tool Total SAT UNSAT Hard

Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

Linear CHCs Eldarica 226 (18) 140.2 156 98.9 70 220 40 532.7

StHornE 231 (23) 108.7 151 97.5 80 130.2 45 403.3

portfolio 249 65.6 164 50 85 95.6 63 239.5

Non-Linear CHCs Eldarica 325 (40) 74.5 198 81.5 127 63.2 134 156.4

StHornE 302 (17) 168.3 194 129.1 108 231.5 111 366.7

portfolio 342 27.3 211 19.1 131 40.5 151 53

lio solver shows a great improvement in runtime over each of the solvers alone,
in both categories. This shows that StHornS can complement Spacer.

StHornE vs Eldarica

Linear CHCs: StHornE performs better than Eldarica on the set of linear
CHCs as it solves more instances and performs better w.r.t. runtime. In addition,
the set of instances solved by each tool is different: StHornE solves 23 instances
not solved by Eldarica, while Eldarica solves 18 instances not solved by
StHornE . Analyzing the instances based on their satisfiability shows that the
biggest improvement is achieved on unsatisfiable instances (1.7 times faster).

Non-Linear CHCs: On these instances, however, Eldarica performs better
than StHornE , on both number of solved instances and average runtime. A more
detailed analysis of the results reveal that for StHornE , the time spent in the
Amend procedure is significant. This has a few reasons. First, the interpreta-
tions returned by Eldarica are not necessarily a set of conjuncts, which lim-
its StHornE ’s ability to retain parts of the satisfying interpretations returned
when analyzing a subset of clauses. Second, since Eldarica does not have an
API that allows “pre-loading” a rule-satisfying interpretation for a predicate,
we used a satisfiability-preserving transformation. However, this transformation
limits StHornE (see Remark 4) such that it can only “strengthen” the given
rule-satisfying interpretation when invoking Solve. Lastly, since StHornE makes
many calls to Eldarica through JNI, this imposes an overhead.

Portfolio: Despite all of the above, when considering a portfolio solver that
invokes both StHornE and Eldarica, performance improve quite significantly
both in the number of solved instances and runtime. This again shows that
StHornE can complement Eldarica and improve its performance.

Summary. Overall, StHorn solved more instances and had a faster runtime than
Spacer and Eldarica. One exception is the Non-linear category, where Eldar-
ica outperforms StHorn. StHorn, however, demonstrated substantial improve-
ments in the portfolio solver, both in the latter category and the rest, indicating
that it complements both tools by allowing them to solve new instances more effi-
ciently. In addition, our evaluation indicates a greater improvement for UNSAT

Structure-Guided Solution of CHCs 135

instances, but also a promising improvement for SAT instances. It is therefore
evident that StHorn can improve upon the state-of-the-art in CHC solving.

7 Related Work

There is a large body of work on solving the CHC-SAT problem, with a
plethora of algorithms and tools that are based on different methods such
as IC3/PDR, interpolation, Counterexample-Guided Abstraction Refinement
(CEGAR), Predicate Abstraction, and Machine Learning [7,8,12,14,16,23,24,
28,34]. The technique presented in this paper, StHorn, is orthogonal to these
algorithms as it uses a CHC-solver as a “black-box”.

CHCs gained popularity in recent years since many program, and recently
hardware, verification problems can be reduced to the satisfiability of CHCs [7,
17,20,26,33]. Many program verification algorithms work by analyzing differ-
ent paths in the program separately, when trying to establish the correctness of
the whole program [10,21,22,31]. In this sense, StHorn draws its intuition from
path-sensitive verification algorithms. However, most program verification algo-
rithms that operate on paths consider bounded execution paths in the control
flow graph, while StHorn considers complete paths in the graph, that may include
loops. Intuitively, this is similar to analyzing complete fragments of a program
that include loops, without unrolling them explicitly. The closest work to ours
in this regard is [6] where complete fragments of a program (i.e., “path pro-
grams”) are considered. The usage, however, is quite different as they use “path
invariants” to eliminate spurious counterexamples in the context of CEGAR,
whereas we construct satisfying interpretations for CHC sets incrementally based
on interpretations of satisfiable subsets.

Hypergraphs have been suggested before in [2] for solving propositional Horn
formulas, in which the uninterpreted predicate symbols are Boolean. That is,
they can be assigned either � or ⊥. Given a propositional Horn formula, they
show how to maintain on-line information about its satisfiability during the
insertion of new clauses. Clearly, this is a different problem.

Lastly, StHorn uses a structure-guided heuristic for selecting the subsets to
be solved and tries to re-use information when analyzing different subsets. We
are unaware of a similar heuristic for prioritizing clauses during the search for a
satisfying interpretation.

8 Conclusion

In this work, we present StHorn, a technique for deciding the satisfiability of
a set Π of CHCs. StHorn handles monotonically larger subsets of Π, which are
selected based on its structure. The technique exploits a satisfying interpretation
obtained for one subset as a basis for solving subsequent subsets. We use a CHC-
solver as a “black-box”. Our evaluation shows that StHorn, when added on top of
Spacer, improves upon state-of-the-art. Moreover, it complements both Spacer
and Eldarica, allowing them to solve new instances more efficiently.

136 O. Rappoport et al.

Future research plans include: (i) designing domain-oriented selection strate-
gies; (ii) enhancing current (syntactic) strategies with semantic hints; and (iii)
integrating the technique natively into a CHC-solver, reducing the overhead
imposed by its API and further improving performance.

References

1. Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: problems, algo-
rithmic results, and a novel decremental approach. In: ICTCS 2001. LNCS, vol.
2202, pp. 312–328. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45446-2 20

2. Ausiello, G., Italiano, G.F.: On-line algorithms for polynomially solvable satisfi-
ability problems. J. Log. Program. 10(1), 69–90 (1991). https://doi.org/10.1016/
0743-1066(91)90006-B

3. Ausiello, G., Italiano, G.F., Nanni, U.: Optimal traversal of directed hypergraphs.
Technical report, TR-92-073 (1992)

4. Ausiello, G., Italiano, G.F., Nanni, U.: Hypergraph traversal revisited: cost mea-
sures and dynamic algorithms. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS
1998. LNCS, vol. 1450, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055754

5. Beyene, T.A., Popeea, C., Rybalchenko, A.: Efficient CTL verification via horn con-
straints solving. In: Gallagher, J.P., Rümmer, P. (eds.) Proceedings 3rd Workshop
on Horn Clauses for Verification and Synthesis, HCVS@ETAPS 2016, Eindhoven,
The Netherlands, 3 April 2016. EPTCS, vol. 219, pp. 1–14 (2016). https://doi.org/
10.4204/EPTCS.219.1

6. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Ferrante, J., McKinley, K.S. (eds.) Proceedings of the ACM SIGPLAN 2007 Con-
ference on Programming Language Design and Implementation, San Diego, Cali-
fornia, USA, 10–13 June 2007, pp. 300–309. ACM (2007). https://doi.org/10.1145/
1250734.1250769

7. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

8. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9 8

9. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

10. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in polyno-
mial time. In: Knoop, J., Hendren, L.J. (eds.) Proceedings of the 2002 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
Berlin, Germany, 17–19 June 2002, pp. 57–68. ACM (2002). https://doi.org/10.
1145/512529.512538

11. De Angelis, E., Fioravanti, F., Gallagher, J.P., Hermenegildo, M.V., Pettorossi, A.,
Proietti, M.: Analysis and transformation of constrained horn clauses for program
verification. Theory Pract. Logic Program. 22(6), 974–1042 (2022). https://doi.
org/10.1017/S1471068421000211

https://doi.org/10.1007/3-540-45446-2_20
https://doi.org/10.1007/3-540-45446-2_20
https://doi.org/10.1016/0743-1066(91)90006-B
https://doi.org/10.1016/0743-1066(91)90006-B
https://doi.org/10.1007/BFb0055754
https://doi.org/10.1007/BFb0055754
https://doi.org/10.4204/EPTCS.219.1
https://doi.org/10.4204/EPTCS.219.1
https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1145/1250734.1250769
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/512529.512538
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211

Structure-Guided Solution of CHCs 137

12. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 47

13. De Angelis, E., Govind, V.K.H.: CHC-COMP 2022: competition report. In: Hamil-
ton, G.W., Kahsai, T., Proietti, M. (eds.) Proceedings 9th Workshop on Horn
Clauses for Verification and Synthesis and 10th International Workshop on Verifi-
cation and Program Transformation, HCVS/VPT@ETAPS 2022, and 10th Inter-
national Workshop on Verification and Program TransformationMunich, Germany,
3rd April 2022. EPTCS, vol. 373, pp. 44–62 (2022). https://doi.org/10.4204/
EPTCS.373.5

14. Fedyukovich, G., Kaufman, S.J., Bod́ık, R.: Sampling invariants from frequency
distributions. In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods in
Computer Aided Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp.
100–107. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102247

15. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
a software verifier based on horn clauses. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 46

16. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2012,
Beijing, China, 11–16 June 2012, pp. 405–416. ACM (2012). https://doi.org/10.
1145/2254064.2254112

17. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: a constraint-based verifier for
multi-threaded programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412–417. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 32

18. Gurfinkel, A.: Program verification with constrained horn clauses (invited paper).
In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13371, pp. 19–29. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 2

19. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS,
vol. 9206, pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 20

20. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameterized
systems. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp. 338–348.
ACM (2016). https://doi.org/10.1145/2950290.2950330

21. Harris, W.R., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: Hermenegildo, M.V., Palsberg, J. (eds.)
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, 17–23 January 2010, pp.
71–82. ACM (2010). https://doi.org/10.1145/1706299.1706309

22. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, 14–16 January 2004, pp. 232–244. ACM (2004). https://doi.org/
10.1145/964001.964021

https://doi.org/10.1007/978-3-642-54862-8_47
https://doi.org/10.1007/978-3-642-54862-8_47
https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.23919/FMCAD.2017.8102247
https://doi.org/10.1007/978-3-642-28756-5_46
https://doi.org/10.1007/978-3-642-28756-5_46
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1007/978-3-031-13185-1_2
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/2950290.2950330
https://doi.org/10.1145/1706299.1706309
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021

138 O. Rappoport et al.

23. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

24. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Bjørner, N., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, 30 October–2 November 2018, pp. 1–7. IEEE (2018). https://doi.org/
10.23919/FMCAD.2018.8603013

25. Hojjat, H., Rümmer, P., McClurg, J., Cerný, P., Foster, N.: Optimizing horn solvers
for network repair. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in
Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, 3–6 October
2016, pp. 73–80. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886663

26. Govind, H.V.K., Fedyukovich, G., Gurfinkel, A.: Word level property directed
reachability. In: IEEE/ACM International Conference On Computer Aided Design,
ICCAD 2020, San Diego, CA, USA, 2–5 November 2020, pp. 107:1–107:9. IEEE
(2020). https://doi.org/10.1145/3400302.3415708

27. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
java programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
352–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 19

28. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016). https://doi.org/10.
1007/s10703-016-0249-4

29. Vediramana Krishnan, H.G., Chen, Y.T., Shoham, S., Gurfinkel, A.: Global guid-
ance for local generalization in model checking. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12225, pp. 101–125. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53291-8 7

30. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for rust programs. ACM Trans. Program. Lang. Syst. 43(4), 15:1–15:54 (2021).
https://doi.org/10.1145/3462205

31. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 14

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

33. Zhang, H., Gupta, A., Malik, S.: Syntax-guided synthesis for lemma generation in
hardware model checking. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI
2021. LNCS, vol. 12597, pp. 325–349. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-67067-2 15

34. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Foster, J.S.,
Grossman, D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, 18–22 June 2018, pp. 707–721. ACM (2018). https://doi.org/10.1145/
3192366.3192416

https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1109/FMCAD.2016.7886663
https://doi.org/10.1145/3400302.3415708
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-030-53291-8_7
https://doi.org/10.1007/978-3-030-53291-8_7
https://doi.org/10.1145/3462205
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-67067-2_15
https://doi.org/10.1007/978-3-030-67067-2_15
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416

	Structure-Guided Solution of Constrained Horn Clauses
	1 Introduction
	2 Preliminaries
	2.1 Constrained Horn Clauses
	2.2 Hypergraphs and Hyperpaths

	3 Structure-Guided, Lazy and Incremental CHC Solving
	4 Structure-Guided Selection of CHCs
	5 Ensuring Rule-Satisfiability
	5.1 Exploiting Conjunctive Interpretations
	5.2 Extending Existing Interpretations

	6 Implementation Details and Experimental Evaluation
	6.1 Implementation Details
	6.2 Experimental Evaluation

	7 Related Work
	8 Conclusion
	References

