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Abstract. Hyperproperties specify the behavior of a system across mul-
tiple executions, and are an important extension of regular temporal
properties. So far, such properties have resisted comprehensive treat-
ment by software model-checking approaches such as IC3/PDR, due to
the need to find not only an inductive invariant but also a total alignment
of different executions that facilitates simpler inductive invariants.

We show how this treatment is achieved via a reduction from the ver-
ification problem of V*3* hyperproperties to Constrained Horn Clauses
(CHCs). Our starting point is a set of universally quantified formulas in
first-order logic (modulo theories) that encode the verification of V*3*
hyperproperties over infinite-state transition systems. The first-order en-
coding uses uninterpreted predicates to capture the (1) witness function
for existential quantification over traces, (2) alignment of executions,
and (3) corresponding inductive invariant. Such an encoding was previ-
ously proposed for k-safety properties. Unfortunately, finding a satisfying
model for the resulting first-order formulas is beyond reach for modern
first-order satisfiability solvers. Previous works tackled this obstacle by
developing specialized solvers for the aforementioned first-order formu-
las. In contrast, we show that the same problems can be encoded as
CHCs and solved by existing CHC solvers. CHC solvers take advantage
of the unique structure of CHC formulas and handle the combination of
quantifiers with theories and uninterpreted predicates more efficiently.
Our key technical contribution is a logical transformation of the afore-
mentioned sets of first-order formulas to equi-satisfiable sets of CHCs.
The transformation to CHCs is sound and complete, and applying it to
the first-order formulas that encode verification of hyperproperties leads
to a CHC encoding of these problems. We implemented the CHC en-
coding in a prototype tool and show that, using existing CHC solvers
for solving the CHCs, the approach already outperforms state-of-the-art
tools for hyperproperty verification by orders of magnitude.

1 Introduction

Hyperproperties [15] are properties that relate multiple execution traces, either
taken from a single program or from multiple programs. Checking such properties
is known as relational verification, and is essential when reasoning about security
policies, program equivalence, concurrency protocols, etc. Existing specification
languages for hyperproperties [14,6,43] extend standard ones, e.g., temporal logic
or Hoare logic, with (explicit or implicit) quantification over traces. This shifts
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the focus from properties of individual traces to properties of sets of traces. For
example, k-safety [15] is a class of hyperproperties, where k universal quantifiers
are used to define a relational invariant over states originating from & traces.

This paper addresses verification of hyperproperties with V*3* quantification
over traces and a body of the form O¢ (where O stands for “globally”). This
fragment captures many hypersafety (e.g., the aforementioned k-safety) and hy-
perliveness properties, and was shown by [8] to express a wide class of properties
of interest, including generalized non-interference (GNI) [38].

Verification of hyperproperties is more challenging than verification of single-
trace properties, and, as a result, has gained a lot of attention in recent years.
Unlike single-trace properties, verification of properties of k traces requires the
discovery of relational inductive invariants, which define the relation between
states of k execution traces. Since the construction of invariants that hold be-
tween any k reachable states is hard (or even impossible, depending on the
assertion logic), proving hyperproperties often hinges on finding an alignment of
any k traces such that the invariant only needs to describe aligned states.

In the case of k-safety properties, an alignment of traces is often given by a
self composition [5,44] of the program, composing different copies of the program
(or several different programs) together, e.g., by running the different copies in
lockstep [48] or by more sophisticated composition schemes, e.g., [24]. While self
composition allows to reduce k-safety verification to standard safety verification,
this reduction requires to choose the alignment of the different copies a-priori.
The choice of alignment, however, has a significant effect on the complexity
of the inductive invariants themselves, as demonstrated by [41]. This renders
the standard reduction from k-safety verification to safety verification, based
on a fixed alignment, impractical in many cases. As a result, finding a good
alignment as part of relational verification has been a topic of interest in recent
years [43,27,45,6,8].

In the case of hyperliveness properties that stem from the use of existen-
tial quantification over traces (i.e. V*3* properties), complexity rises further.
Verifying such hyperliveness properties calls for finding “witness” traces that
match the universally quantified traces, in addition to the relational invariant
and alignment. This reduces verification of V*3* properties to the problem of in-
ferring three ingredients: (i) a witness function for existential quantification over
traces, (ii) an alignment of traces, and (iii) a corresponding relational inductive
invariant. These ingredients are all interdependent: different witnesses call for
different alignments and give rise to different invariants, with different levels of
complexity. It is therefore desirable to search for the combination of the three of
them simultaneously, which is the focus of this paper.

We propose a novel reduction from verification of hyperproperties with a
V*3* quantification prefix over infinite-state transition systems to satisfiability
of Constrained Horn Clauses (CHCs) [11,10], also known as CHC-SAT. Impor-
tantly, the reduction does not fix any of the aforementioned verification ingre-
dients, in particular, the alignment, a-priori. Instead, it is based on a CHC
encoding of their joint requirements. The unique structure of CHCs makes it
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possible to adopt software model checking techniques (e.g. interpolation [39],
IC3/PDR [32,35]) for solving them. Our reduction, thus, allows to use state-
of-the-art CHC solvers [28,33,31,49] to achieve a highly efficient hyperproperty
verification procedure.

While it is known that safety verification can be reduced to CHC-SAT, we
are the first to show how inferring the combination of a witness function, a trace

alignment and an inductive invariant for hyperproperties of the V*3*-fragment
can be reduced to CHC-SAT.

The first step of our reduction to CHC-SAT is an encoding of the joint re-
quirements of the witness-alignment-invariant ingredients as a set of universally
quantified formulas in first-order logic (FOL) modulo theories, where uninter-
preted predicates capture the witness, alignment and invariant, and first-order
theories (e.g., arithmetic and arrays) are used for modeling the transition sys-
tem and the requirements. Such an encoding has been proposed by [41] for the
problem of finding an invariant together with an alignment in the context of
verification of k-safety properties (the universally quantified subset of this frag-
ment). We extend their FOL encoding to V*3* properties, based on the game
semantics introduced in [8].

Unfortunately, the resulting FOL formulas are beyond what modern first-
order satisfiability solvers can handle due to a combination of quantifiers with
theories and uninterpreted predicates. In particular, the FOL formulas are not in
the form of CHCs. As a result, previous works [41,45] that used a similar encoding
could not rely on a (single) CHC-SAT query to find the alignment and invariant
simultaneously. Instead, [41] resorted to an enumeration of potential alignments,
using a separate CHC-SAT query to search for an inductive invariant (in a
restricted language) for each candidate alignment. [45] developed a specialized
solver that is able to handle these non-CHC formulas directly.

In contrast to previous works, we introduce a second step where we transform
the set of universally quantified FOL formulas to a set of universally quantified
CHCs. This step—which is also the key technical contribution of the paper—
allows us to use any CHC solver for hyperproperty verification, and benefit from
current and future developments in this lively area of research. We emphasize
that the transformation to CHCs is surprising since it allows us to overcome
a seemingly unavoidable obstacle: a disjunction of atomic formulas involving
unknown predicates, which arises from the encoding of a choice between different
alignment and witness options.

We implemented the reduction of V*3*-hyperproperty verification to CHC-
SAT in a tool called HyHorn, on top of Z3 [23], using SPACER [31] as a CHC
solver. Our results show that HyHorn is very efficient in verifying V*3*-hyper-
properties, outperforming the state-of-the-art [45,8,41] by orders of magnitude.

Our main contributions are:

— We develop a satisfiability-preserving transformation of first-order formulas
of a certain form to CHCs. The transformation is accompanied by a bi-
directional translation of solutions.



Hyperproperty Verification as CHC Satisfiability 215

(1) Init(Vi) A Init(Va) A az > a1 Aba < by — Inv(Vi, Va)

pre(a; < az A by > ba) (2)Inv(Vi, Va) A Apy (Vi, Va) A Tr(Va, Vi) A Va2 = Vs — Ino(V], Vs)
squaresSum(int a, int b){ (3)Inv(Vi,Va) A Aay (Vi, Va) A VA = Vi A Tr(Va, V3) — Inw(VY, V3)
assume (0 < a < b); (4)Inv(Vi, Va) A Aoy (Vi, Va) A Tr(Va, Vi) A Tr(Va, Vi) — Inv(V{, V5)
int c=0; (5)Inv(Vi, Vo) A Ay (Vi, Va
t ~ ) ) 5 s my(V1,V2) = ar < by
while (a<b) {c+=a*a; a++;} (6)Inv(Va, Va) A Agay (Vi, Va) — az < bs
return c;

} (T)Inv(Vi, Vo) A A 23 (Va, Vo) = (a1 < b1 Aaz < b2)
V(a1 > by Aaz > by)
(8)Inv(V1,Va) = ((a1 > b1 Aaz > ba) — c1 > ¢2)

post (c1 > c2)

a1 < az Aby > by — (9)Inv(Va, Va) = Ay (V, Va) V Agay (Va, Va) V Ay 2y (Va, Va)

V1t =(a < b), w2 —(a < b)-O(cr > c2) (b)

(a)

Fig.1: (a) A program that computes the sum of squares of integer interval [a, b)
with a 2-safety specification for it, and (b) its first-order encoding.

— We apply the transformation to obtain, for the first time, a sound and com-
plete reduction from verification of V*3*-OHyperLTL (w.r.t. a game seman-
tics) to CHC-SAT. The reduction captures searching for an alignment, an
J*-witness function and an inductive invariant simultaneously. It is applica-
ble to infinite-state transition systems, with the caveat that their branching
degree needs to be finite (bounded by a constant) if the hyperproperty in-
cludes 3* quantification.

— To handle 3* in the presence of unbounded nondeterminism, we incorporate
into the CHC encoding a sound abstraction based on a set of underapproxi-
mations (“restrictions”).

— We implement a tool, HyHorn, that constructs CHCs for V*3*-OHyperLTL
specifications, and solves them using SPACER. In most cases, HyHorn discov-
ers the solution completely automatically, while in some, it uses predicate
abstraction, based on user-provided predicates.

2 Overview

We illustrate our approach for verifying hyperproperties by reduction to CHC-
SAT. We start with the simpler case of k-safety properties, followed by the more
general case of V*3* hyperproperties.

2.1 DMotivating Example

As a means for highlighting the challenges in verifying hyperproperties, and, in
particular, in reducing the problem to CHC solving, we present the example
program squaresSum and its 2-safety specification from [41] in Fig. la. Given
positive integers a < b, the program computes the sum of squares of all integers
in the interval [a,b). squaresSum is monotone in the sense that as the input
interval increases, so does the output c. Formally, this is a 2-safety property that
requires that whenever two traces satisfy the pre-condition [ag,b2) C [a1,b1),
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they also satisfy the post-condition ¢; > ¢, where variable indices correspond
to the traces that they represent. This is a special case of k-safety, where the
relational property is checked at the end of the executions. More generally, we
consider k-safety properties where the relational property is specified at desig-
nated observation points (explained in Sec. 3).

To verify the 2-safety property, a prominent approach is to reduce the prob-
lem to a regular safety verification problem by composing the program with
itself (known as “self composition”). There are (infinitely) many possibilities
for aligning the traces in the composed system, and the alignment chosen has
direct impact on the complexity of the inductive invariant needed to establish
safety. For example, if the two traces of squaresSum are aligned in lockstep,
then initially ¢; = co, after one step, ¢; < ¢z, and only later on, ¢; > ¢3. Show-
ing that ¢; > co at the end requires tracking the difference c¢; — co, which is
a complex value because it involves the sum of squares itself. This cannot be
captured by an inductive invariant in first-order logic using theories currently
supported by automated solvers (e.g., linear arithmetic) and is therefore beyond
reach for state-of-the-art solvers. On the other hand, if the second trace, whose
input is the smaller interval, “waits” for a; and as to coincide before proceeding
in lockstep, then the property that ¢; > c¢o becomes inductive (except for the
first step), greatly simplifying the inductive invariant. It is therefore important
to consider the alignment and the (relational) inductive invariant together.

The requirements that the alignment and inductive invariant need to satisfy
can be formulated in first-order logic [41]. To do so, we denote the program
variables by V' = (a,b,c). We express the initial states and program steps as
formulas over V (and primed variant V') : Init(V) = a > 0Ab > a Ac = 0,
Tr(V,V') 2 a <bAd =cH+a-ard =a+ 1A =b To reason about two
traces, we use two copies of V', denoted V; and V5. We introduce “unknown”
predicates Inv, A1y, Agay, Ag1,2) over (Vi, V) to capture the inductive invariant
and desired alignment of the traces. {A,}, define an arbiter that, when A, is
satisfied, schedules the steps of the traces according to u (for example, schedule
u = {1} stands for a step in trace 1 and a stutter in trace 2). The arbiter
therefore determines the alignment of the traces. The inductive invariant Inv
relates states of the two copies of the program, making it relational.

The problem of searching for the alignment and the inductive invariant si-
multaneously is then posed as a satisfiability problem (modulo the theory of
arithmetic) of the formulas in Fig. 1b. To ensure that the arbiter, which deter-
mines the alignment, does not avoid violations of the post-condition by making
one of the traces stutter forever s.t. it never reaches its final state, formulas 5-7
require that the arbiter only schedule a trace if it has not exited the loop, unless
both traces exited the loop (in which case both are scheduled). This “validity”
requirement means that, at the latest, the arbiter must schedule a trace when
the other reaches the final state. Formulas 1-4 then ensure that all states that
are reachable, subject to the steps permitted by the arbiter, must satisfy Inv.
Specifically, the first formula ensures the initiation condition of the inductive in-
variant: the invariant satisfies the pre-condition and includes all the initial states
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of the composed system. Formulas 2-4 ensure the consecution of the invariant
under every choice the arbiter makes. The 8th formula ensures the safety of the
invariant and the last formula mandates that there is always at least one choice
that is enabled, and that the system never reaches a “stuck” state.

An interpretation for the unknown predicates Inv, A;1y, Aqay, Aq1,2) defines
an arbiter and a corresponding inductive invariant. A possible solution is

AV, W) 2 a1 <azV(ba<ar<by)  Apy(i,Va) = L
A1,y (V1, Vo) = (a1 =aaANay <by)Va >b
ITLU(Vl,VQ) 2 0<ay Sbl/\() <ag < bzA ((al < az N\cy 262)\/((11 > as N\ cy >C2))

This solution captures the arbiter that makes the second trace wait until
a1 = asz, then makes both traces proceed together until the second one exits its
loop, in which case the first trace continues to execute alone until it also exits
its loop and both traces are again (vacuously) scheduled together. The solution
to Inv captures the corresponding inductive invariant previously discussed.

2.2 Challenges in Encoding Hyperproperty Verification as
CHC-SAT

The formulas of Fig. 1b, with the exception of the last one, are constrained
Horn clauses. That is, when the implications in these formulas are converted to
disjunctions, at most one predicate application appears positively in each clause.

Alas, the presence of the last formula precludes direct application of exist-
ing CHC solvers. The problem is the disjunction on the right hand side of the
implication. Such a disjunction appears to be crucial for a correct encoding of
the problem. The reason is that uninterpreted predicates designate semantic re-
lations. With such predicates denoting the choice of schedule, it is easy to drop
into a vacuous solution where some states have no corresponding choice and are
essentially “stuck”, unsoundly making a post-condition violation unreachable.
Encoding the requirement that every state have a schedule results in a clause
with multiple occurrences of positive literals, capturing inherent disjunctions
over the possible choices, which are not Horn. In particular, these disjunctions
cannot be eliminated by renaming [37].

Previous works tackled this obstacle either by employing explicit enumeration
of alignments that satisfy the non-Horn clause to avoid the disjunction [41], or by
developing specialized techniques that are able to handle such disjunctions [45].

2.3 Our Approach: Transformation to CHC

In this paper, we show that the problem of searching for an alignment together
with a (relational) inductive invariant can be encoded using CHCs, allowing us
to reduce the problem to CHC-SAT, without fixing the alignment a priori.

A key insight of our reduction to CHC-SAT is the use of “doomed” states
as a way to avoid the problematic disjunction over all choices of schedules. We
refer to a given state as “doomed” if it necessarily reaches a state that violates
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D13(V1,V2) A Dg23(Vi,Va) A Dy1,2y(Vi,Vz) A Init (Vi) A Init(Va) Aaz > a1 Aby < by — L
(al >bi Aaz > by — c1 > 62) — D{l}(vl,‘/z)
—(a1 > bi Aaz > by = c1 > c2) = Dygy(Vi, V2)
(a1 >bi ANaz > by —c1 > Cz) — D{l 2}(V1,V2
(a1 < b1) = Dy (Vi, V)
(a2 < ba) = Dyay(Vi, V2)
—(a1 <bi ANaz <b2) A=(ar > bi Aaz > b2) = Dy 23(Vi, V2)
Dy (V{, Va) A Day(VY, Va) A Dyy 2y (V1 Vo) A Tr(Vi, Vi) AVa = Vi — Dy (Vi, Va)
Dy(VH, Va) A Dgay(V{, Vi) A Dpy oy(VY, Va) AVL = VI A Tr(Va, Va) = Dy2y(Va, Va)
D13(V1,V3) A Dyoy(V{, V) A Dpy oy (V1, Va) A Tr(Vi, Vi) A Tr(Va, Va) = D103 (Va, Va)

Fig.2: CHC encoding of Fig. 1a.

the hyperproperty along every valid alignment (as opposed to some in the di-
rect encoding). Importantly, due to this conjunctive nature, doomed states lend
themselves to a Horn encoding. If an initial state is identified as doomed (i.e.,
the CHCs are unsatisfiable), then the property is violated and a counterexample
can be retrieved. Otherwise, if the set of initial states does not intersect the set
of doomed states, then the hyperproperty is proved. Moreover, given an inter-
pretation of the unknown predicates in which the initial states are not doomed,
an alignment and a corresponding inductive invariant can be retrieved.

Based on this insight, in Sec. 4, we develop a general transformation of formu-
las of a certain form, to an equi-satisfiable set of CHCs. Furthermore, we provide
a transformation of solutions between the two formulations (in both directions).
The first-order formulas to which the transformation is applicable follow the
overall structure of the formulas in Fig. 1b, but are somewhat more general.
For example, some of the unknown predicates may have additional arguments,
which turn out to be useful when considering a broader class of hyperproperties
beyond k-safety (V*3*).

In Sec. 5 we apply the transformation of Sec. 4 to reduce k-safety verification
to CHC-SAT. When applying the transformation on the formulas encoding our
running example (Fig. 1b), we obtain the set of CHCs depicted in Fig. 2 over
unknown predicates D1y, Doy, Dy1 2}

In the CHCs of Fig. 2, an unknown predicate D, represents states that are
“doomed” if schedule u is chosen. The first CHC requires that no initial state
that satisfies the pre-condition is completely doomed, i.e., for every such state
there is a schedule for which it is not doomed. The remaining CHCs encode the
properties of doomed states for each schedule. For example, the CHCs where
Dyyy is in the head (right hand side of the implication) imply that a state is
doomed for schedule {1} if: (a) it violates the post-condition, (b) it already
exited the loop and hence trace 1 cannot be the only trace to be scheduled, or
(c) it is the pre-state of a transition taken by 1 leading to a post-state that is
doomed for every choice wu.

A solution to the CHCs in Fig. 2 can be obtained from the solution to the
formulas in Fig. 1b by D, = =(Inv A A,) for every u € {{1},{2},{1,2}}.

More generally, in Sec. 4, we show a bi-directional transformation of solutions.
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2.4 Beyond k-Safety

Our transformation to CHCs is not limited to an encoding of k-safety, but also
generalizes to hyperproperties that use V*3* quantification over traces, as pre-
sented in Sec. 6.

Hyperproperties with existential trace quantification become meaningful in
the presence of nondeterminism in the program. For an example of such a
property, consider a nondeterministic variant of squaresSum where the assign-
ment ¢ += a * a is replaced by if (*¥) c += a * a. That is, the increment
of ¢ may nondeterministically be skipped. We may now wish to verify that, if
[az,b2) = [a1,b1), then for every trace from input [a1, by ) there exists a trace from
input [ag, b2) such that when both terminate, ¢; # ¢3. This is a V3-hyperproperty.

To verify such properties, a “witness” function is needed to map the univer-
sally quantified traces to the corresponding existentially quantified traces such
that the body of the formula holds for the combination of the traces. Even if a
witness function is known, to verify that the combination of the traces satisfies
the body of the formula, we still need to find a proper alignment of the traces
and an inductive invariant. As in the case of k-safety, these components are all
interdependent, making it desirable to search for all of them together.

In general, the witness function for the existentially quantified traces may
need to depend on the full universally quantified traces. However, [8] defines a
sound but incomplete game semantics, in which the witness function essentially
constructs the existentially quantified traces step-by-step, in response to moves
of a “falsifier” who reveals the universally quantified traces step-by-step.

We show in Sec. 6.1 that the problem of searching for a step-by-step witness
function, an alignment and a (relational) inductive invariant can be encoded in
first-order logic, and the encoding is amenable to our transformation to CHCs.
This results in a sound and complete CHC encoding of the game semantics of [8]
for transition systems whose branching degree is bounded by a constant, which
we henceforth refer to as “finite branching”.

The idea in the V*3*-first-order encoding is to let the unknown predicates
A, specify not only the schedules chosen by the arbiter but also the choice of
existentially quantified traces for the witness function. To do so, we assign a
unique label to each of the possible transitions, and use these labels to identify
the transitions along the traces. In this encoding, instead of u denoting a schedule
only, it now denotes both a schedule and a choice of labels identifying the next
transitions in the existentially quantified traces according to the witness function.
Furthermore, the A, predicates receive additional arguments that represent the
next labels along the universally quantified traces.

For example, in the nondeterministic variant of squaresSum, there are at
most two possible transitions in each control location. We therefore introduce
two labels to distinguish between these possibilities: i for “increment” and s for
“skip”. The predicates that describe the schedules and the choices of existentially
quantified traces for the V3-hyperproperty of interest are:

Ay Ay Apeyas Aays Aeys A2y s
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They are defined over (V7, V5, a), where a ranges over the possible labels.

Note that in this encoding, the A, predicates are no longer defined over
(V1,Va) only, but have additional arguments for the labels of the universally
quantified traces, while Inv does not. Thus, the reduction to CHCs applies our
transformation in a more general setting than Fig. 1b. Furthermore, since u
denotes both a schedule and a choice of labels for the existentially quantified
traces, the number of A, predicates depends on the number of labels. To ensure
that there are finitely many predicates, we require the transition system to have a
finite branching degree (otherwise, the space of possible labels becomes infinite).

Finally, in Sec. 6.2, we extend our approach to handle infinite (or unbounded)
branching in the transition system, which can result, for example, from reading
an input from an infinite domain. To do so, we introduce another first-order
encoding that roughly replaces the infinitely-many concrete choices of transi-
tions by finitely-many abstract choices. Unlike the cases of k-safety and V*3*-
hyperproperties with finite branching, the resulting encoding is sound but in-
complete w.r.t. the game semantics. By applying our transformation, we obtain
a sound (albeit incomplete) reduction to CHC-SAT.

3 Background

We use first-order logic to model systems and their properties. Throughout the
paper, we fix a background first-order theory 7 and denote its signature by X.

Transition Systems A (symbolic, labeled) transition system is a tuple T'S =
(V,a, Init, Tr), where V' is a vocabulary, i.e., a vector of (logical) variables, each
associated with a sort from X', denoting state variables; a is a label variable; Init
is a formula over X with free variables V', and Tr is a formula over X with free
variables V U {a} U V', where V' consists of the primed variants of V.

A state of TS is a valuation to V, and we denote by S the set of all such
valuations; LL is the set of values that a can take, called labels; Sy C S is the set of
initial states, which consists of all valuations that satisfy Init, and R C SxL xS
is the transition relation, which consists of the valuations for the composite
vocabulary V' U {a} UV’ that satisfy Tr. For simplicity, we assume that R is
total, i.e., Vs € S A € L,s" €S- (s,4,s") € R3. We say that TS is deterministic
when Vs € S,£ € L [{s’|R(s,a,s')}| = 1 and that it has finite branching when
L is finite. A trace of TS is an infinite sequence of states t = sq, s1, ... such that
for every ¢ > 0 there exists £ € L such that (s;, ¢, s;+1) € R. We denote by t[i]
the 7’th state in t. We further denote the set of traces that start from a state s
by T(s), and the set of all traces of TS by T.

Hyperproperties and their specification. We consider a fragment of the relational
logic OHyperLTL [6] , which we call V*3*-OHyperLTL with formulas of the form:

o =Y —=Vmy &, & 3mar 1,k 2 E - U

3 w.lg.; Tr can always be replaced by TrV((Va ¥YV'-=Tr)AV’ = V), which corresponds
to adding self loops to states that have no outgoing transition.
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where m; are trace variables whose intended valuations are taken from T; &;
are (non-temporal) formulas with free variables V' that determine observation
points along the k traces, where the traces must synchronize; v is a pre-condition
that is assumed to hold initially; and ¢ needs to globally hold when all traces
reach the observation points (which they must synchronize on before moving
on). V; denotes a copy of V' where all variables are indexed by j. We refer to the
variables in V; as the state variables of the j’th trace (namely, 7;). When [ = k,
i.e., all quantifiers are universal, ¢ is a k-safety property. A relational pre/post
specification, as used in our motivating example, is a special case of a k-safety
property where the observable points are the final states (which are augmented
with self loops). For example, Fig. 1a presents the V*3*-OHyperLTL specification
of the motivating example. When [ < k, the formula also includes existential
quantifiers, extending expressiveness to include some hyperliveness properties.
An example of a security hyperliveness property that can be expressed in V*3*-
OHyperLTL is generalized non-interference (GNI) [38]. GNI requires that for
any two traces m; and 7o there exists a trace w3 whose high (secret) inputs agree
with m; and whose low (public) inputs and outputs agree with 7o.

V*3*-OHyperLTL formulas are interpreted over transition systems. Intu-
itively, ¢ holds in a transition system if from every k initial states that jointly
satisfy the pre-condition ), for every [ traces from the first [ states there exist
corresponding k—1 traces from the remaining k—1 states s.t. the composed states
of all traces globally satisfy ¢, when the traces are projected to their observation
points. Formally, given a transition system TS and ¢ as above, we refer to a tu-
ple (s1,...,sk) of k states of T'S as a composed state. A composed state defines
a valuation to V3 U ... UV}, where s; is the valuation of V. A composed state
is initial if s; € Sy for every 1 <1 < k. We say that T'S |= ¢ if for every initial
composed state 3 = (s1,...,8;) such that 3 |= 1 the following holds: for every
t1,...,t; € T(sy) x «-- x T(s;) there exist tj11,...,t, € T(s;41) X -+ x T(s)
such that (t1)e,, ..., (tx)e, = O¢, where (t;)¢, is the projection (filtering) of
trace t; to states satisfying &;. The semantics of ¢ is that t,..., ¢, = O¢ iff
Vi <min(|t}], ..., |t])- (¢ [2], ..., t,[1]) = ¢. Note that the semantics is oblivious
to the transition labels since labels are only implicit in traces. Labels become
useful in Sec. 6, where we use them to identify transitions along traces.

Remark 1. To simplify the presentation we consider hyperproperties defined
w.r.t. a single transition system. The extension to multiple transition systems is
straightforward. Similarly, (J¢ can be generalized to any temporal safety prop-
erty via the standard automata-theoretic approach to model checking.

Constrained Horn Clauses (CHCs) are defined over a signature X’ that extends
X with a set P of (uninterpreted) predicates. Symbols in X are called interpreted,
while the predicates in P are uninterpreted (sometimes called unknown). First-
order formulas over X are called constraints. A CHC is a first-order formula
of the form VX - A\, Pi(X;) A ¢(X) — H(Xp) where X is a vector of (logical)
variables; P; € P (not necessarily distinct, i.e., it is possible that P;, = P;, for
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Inv(V) A 282 : inv(w ’/G\UDU(V, W)Aa(V) — L
Ino(V) A Au(V, W) A va(V, W) = L B(V) = Du(V, W)
V] Inu(V) A Au(V, W) A8, (V, V', W) — Ino (V') Yu(V, W) = Du(V, W)
mo(V) = \/ Au(V, W) /\ D (VW) A 8u(V V', W) = Du(V, W)
u' €U
(¥l=vuev) (a) (b)

Fig. 3: Formula scheme before (a) and after (b) the transformation.

i1 # i2); H is either L or a predicate from P; X;, Xy C X; and ¢ is a constraint.
The universal quantification over X’ is often omitted.

A set of CHCs (or, more generally, first-order formulas) is satisfiable (modulo
T) if it has satisfying model M such that the projection of M onto X' is a model
of T. A solution to a set of CHCs maps every predicate in P to a formula over
X’ that defines it such that substituting all occurrences of the predicates by their
definitions results in formulas that are valid modulo 7. If a set of CHCs has a
solution then it is satisfiable. However, the converse may not hold due to the
limited expressive power of first-order formulas.

4 General Transformation to CHCs

In this section we describe a satsifiability-preserving transformation that lets
us convert a set of formulas, which adheres to a specific FOL scheme, to an
equi-satisfiable set of CHCs. An extended version, with step-by-step details of
the transformation, appears in [34]. Later we show how verification of a V*3*-
OHyperLTL property can be captured by a set of formulas of the aforementioned
scheme, where this transformation allows us to then reason about the correctness
of the V*3*-OHyperLTL property by deciding the satisfiability of the CHCs.
Consider the scheme in Fig. 3a for a set of formulas over a signature X’
that extends the signature X' of the background theory by unknown predicates
Inv and {A,}yueu, for some finite set U. V, V', W denote disjoint vocabularies,
i.e., vectors of (logical) variables that are implicitly universally quantified. A row
prefixed by |V|indicates |U| formulas, where u is substituted by all corresponding
values from U. «, 3, vy, 0, designate constraints (no occurrence of Inv or A,).
At a high level, formulas 1 and 4 in Fig. 3a use Inv to capture an inductive
invariant of the “states” (valuations to V) reachable from « by “transitions” of
0w, restricted according to a choice u € U of an “arbiter” {4,},. Formula 2
establishes the fact that the reachable states are disjoint from some “bad states”
B. Formulas 3 allow to enforce that the arbiter meets certain requirements, and
formula 5 ensures that the arbiter makes a choice for every “state” in Inv.

Ezample 1. For our running example, we have V = (V1, Va) = (a1, b1, ¢1, az, b2, c2),
V= (V{,V5) = {a},b], ], ab, by, ch), and W = () (The extra vocabulary W will
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come into use later in the paper). U is the set of arbitration choices {{1}, {2}, {1,2}},
and the corresponding completion of the constraint holes «, 3, v, 0, is easily dis-
cernible. (Note that a constraint on the right of — corresponds to its negation
on the left.)

Note that the last formula in Fig. 3a is not a CHC since its head is a dis-
junction of unknown predicates. To remedy this shortcoming, we transform the
formulas in Fig. 3a into the set of CHCs in Fig. 3b. The CHCs obtained for
the running example are included in the extended version of the paper [34]. The
transformation ensures:

Theorem 1. The set of formulas in Fig. 3a is equi-satisfiable to the system of
CHCs in Fig. 8b. Furthermore, there is an efficient translation of models of the
former to models of the latter, and vice versa.

Proof. The extended version of the paper [34] includes a stepwise transforma-
tion that shows how the CHCs in Fig. 3b are obtained from the formulas in
Fig. 3a, where each step preserves equi-satisfiability and models. Here, due to
space constraints, we only describe the final translation between models, which
we have verified with Z3:

Given Inv, A, = [Fig. 3a] ‘ Given D, |= [Fig. 3b]

D,(V,W) & =(Inu(V) A A,V W) | Inw(V) 2YW -\ epy ~Du(V, W)
A (VW) & =D, (V, W)

5 Encoding k-Safety Verification as CHCs

In this section we address the problem of verifying k-safety properties via a
CHC encoding. To this end, we start with a natural, non-Horn, encoding of the
problem, as described in the previous section and previous works [41,45,8], and
apply our transformation to obtain an equi-satisfiable system of CHCs.

Consider the k-safty formula: ¢ = ¢ = Vmy 1 &, ., & - Lo

This formula holds in a transition system TS if, starting from initial composed
states that satisfy the pre-condition 1, the observable states along every tuple of
k traces satisfy ¢, when the observable states are reached synchronously. Note
that a pre-post specification, as used in our motivating example, is a special
case of such a formula where the observable states are the final states. Verifying
© corresponds to finding (1) an alignment of the traces that synchronizes the
observation points defined by &1, ..., &, and (2) an inductive invariant that es-
tablishes that ¢ holds whenever &1, ..., &, hold. Note that the invariant needs to
be inductive along the aligned traces, including intermediate states between ob-
servable points. As different alignments give rise to different inductive invariants,
it is desirable to find both of them simultaneously [41].

As before, we model the alignment using an arbiter that schedules a subset
@ # M C {1,...,k} of the traces to make a step based on the current composed
state s1-- - s,. The arbiter may be nondeterministic, but it must choose at least
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Ni it (Vi) Ap(V) — Inv (V) N\ D (V) AN Init (Vi) Ap(V) — L
Inv(V) A Bad(V) — L M i
Inv(V) A Av (V) A —walida (V) — L
Inv(V) A Ay (V) A S (V, V') — Inv(V')
(V) = \/ Au (V)

(Lel=van) (a) : (b)

Bad(V) — DM(V)
ﬁvalidM(V) — DM(V)
/\ Dy (V/) Ao (V, V/) — Du (V)

M/

(<<l

Fig. 4: k-safety formula scheme before (a) and after (b) the transformation.

one set M. Furthermore, the arbiter must respect the synchronization of the
observation points: it must not let a trace proceed beyond its observation point
before the other traces reached theirs. This motivates the following definition.

Definition 1 (valid schedules). M is a valid schedule for a composed state
81+ - S if either of the following two conditions holds:
1. Vi€M~8ib&& 2. Vi6M~si|:£iandM:{l,...,k;}.

Intuitively, the observation points act as a “barrier”. All traces must reach
the observation point before any of them can progress past it; and when they
do, they do it simultaneously.*

To reason about composed states, we define a vocabulary V =V, U... UV}
that consists of the set of state variables of all traces. We encode the arbiter
using a family of unknown predicates {Ay (V) }ar for every @ # M C {1,...,k}
and the inductive invariant using an unknown predicate Inv()). We express the
situation where all traces reach an observable state but ¢ does not hold using
the constraint: Bad(V) = A, & (Vi) A —=¢(V). The joint steps of the traces as
determined by the schedule M are given by the following constraint:

A

AM(vavlaalv .- '7ak) = /\iEM Tr(vi’aivvil) A /\ieM Vi= Vi/
(SM(V,V/) é ﬂal, N AM(V,V’,al, ce ,ak)

Note that the label variables are existentially quantified®, indicating that any
labeled transition can be used. The definition of a valid schedule is captured by:

Nienr ~& (Vi) M#{1,....k}
(Nierr =6 V)V (Niens &) M ={1,....k}

Fig. 4a formalizes the joint requirements of the arbiter and the inductive in-
variant that ensures that ¢ holds. The following theorem summarizes the sound-
ness of the encoding, which is a slight generalization of the encoding in [41]
(where only pre/post specifications are considered):

valid (V) = { (1)

4 The requirement that all traces leave the observation point in tandem saves the need
to record which of them already made a step since the last observation point.

5 Since dar appears on the left-hand side of an implication, existential quantifiers can
be pushed outside as universal quantifiers, resulting in quantifier-free bodies.
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1 sum = 0; 10 else {
2 b =X 11 i= 1
3 if (b >0 o 12 while (i < n) {
4 i = 0; 13 y = *;
5 while (i < n - 1), { 14 sum = sum + A[i] + y;
6 sum = sum + A[i]; .

N 15 it++;
7 i++;

16 }

8 ¥ 7y
9

(Ai=A2An1 =n2) = Vm :pc =5 3w : pc =5V pe =12-0(ba < 0A sumq = sumsz)

Fig. 5: Example for a V3 hyperproperty.

Theorem 2. The set of formulas in Fig. 4a is satisfiable iff TS = .

Ezample 2. Applying the scheme of Fig. 4a to the program and V*3*-OHyperLTL
specification of the 2-safety property from Fig. la results in Fig. 1b, except for
moving constraints to the right hand side of the implication when it assists
readability. Note that in this example, the observation points &; of both traces
correspond to the condition for exiting the loop (which is the negated loop con-
dition). As a result valid; 2 < b forie {1,2} and walidy 2y = (a1 <
b1 Nag < b2) V (—|(a1 < bl) N —\((IQ < b2))

The set of formulas in Fig. 4a fits the general scheme of Fig. 3a; Thus, it
is amenable to our general satisfiability-preserving transformation, the CHCs
in Fig. 4(b). Since the transformation is satisfiability preserving, we obtain the
following as a corollary of Thm. 1 and 2:

Corollary 1. The system of CHCs in Fig. 4b is satisfiable iff TS |= .

Where Ap (V) in Fig. 4a describes the states where choosing schedule M
leads to successful verification with Inv as an inductive invariant, Dps(V) in
Fig. 4b can be understood as describing states where choosing M would prevent
the verification from going through in the sense that no inductive invariant
would exist. In other words, these states are “doomed” if M is chosen, hence
the choice of notation. If the set of CHCs in Fig. 4b is satisfiable, it proves that
initial states that satisfy the pre-condition are not doomed. This intuition can
be interpreted in a dual manner: if the initial states are not doomed, then there
exists an alignment for which a safe inductive invariant exist.

6 Encoding V*3* Hyperproperties as CHCs

In this section we consider the more general case of V*3*-OHyperLTL specifi-
cations. Throughout the section, T'S is a transition system, and we fix a formula:

Y = 1/)—>V7T1 251,...,7'([ 251-37T1+1 Z§l+17...,ﬂ'kifk' D¢
In order to encode the problem of deciding if TS = ¢ as a satisfiability
problem, we follow [8], and consider a game semantics, which is natural due
to the alternation of quantifiers. The V and 3 quantifiers are “demonic” and
“angelic”, thus controlled by the falsifier and the verifier, respecitvely.
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In the following, we introduce the game semantics of [8] for V*3*-OHyperLTL.
We then encode truth of ¢ in T'S under the game semantics as a satisfiability
problem, and use the transformation from Sec. 4 to obtain a system of CHCs
that is satisfiable iff T'S satisfies ¢ according to the game semantics.

Ezample 3. To illustrate the game semantics, we use the example in Fig. 5, which
accompanies this section. The presented program computes the sum of an array
slice, nondeterministically choosing between the slice A[0..n —2] and A[l..n —1].
For the second variant, an arbitrary integer can be added to each summand.
This allows the program to fulfill the specification at the bottom, which requires
that for every execution there is a corresponding execution of the second variant
(where by < 0) such that the sums at lines 5 and 12 align at every iteration. The
specification is valid because y at line 13 can always be chosen to compensate
for the deviation due to the index i not being the same.

Considering the game semantics, the falsifier first has to choose a value for
b, which can be either positive or nonpositive. If it is nonpositive, then the
verifier wins the game vacuously because &; = (pc = 5) is never reached. If the
choice is positive, then the verifier must choose nonpositive to satisfy by < 0
from the specification. In subsequent steps, the verifier must select a scheduling
that will align pc; = 5 and pc = 12 at every iteration, and select a value for
y such that after both assignments (lines 6 and 14) sum; = sums is satisfied.
When following these choices, the verifier manages to satisfy sum; = sumsq at
all observation points, which gives it a winning play.

Safety games are played between a wverifier, whose goal is to avoid bad states,
and a falsifier who tries to reach a bad state. Formally, the game is a tuple
G = (VS,FS,Sy,0v,0r, B) where VS are verifier states, in which the verifier
moves, and F'S are falsifier states, in which the falsifier moves, and VSNFS = &.
The game states are S = VS U FS. Sy C S is a set of initial states, and B C S
is a set of bad states. dyy C VS x § defines the possible moves of the verifier and
0r C FS x S—of the falsifier. It is assumed that &y, are total i.e., there is at
least one move for each player from every state. A play is a sequence of game
states og, 01, ... such that op € Sy, and for every ¢ > 0, (04,0;11) € 0y U dp.
The play is winning for the verifier if it is infinite and o; ¢ B for every i > 0.
A (memoryless) strategy for the verifier is a function x : VS — S such that
(0,x(0)) € dy for every o € VS. x is a winning strategy for the verifier if all the
plays in which the verifier moves according to x are winning for the verifier.

Game semantics for V*3*-OHyperLTL Let ¢ be as above. The game that cap-
tures the semantics of ¢ is defined with respect to a deterministic labeled transi-
tion system TS = (V,a, Init, Tr). (We can always determinize T'S by extending
the set of labels without affecting the semantics; this step may introduce in-
finitely many labels, which do not require any special treatment in the definition
of the game, but whose CHC encoding will be addressed in Sec. 6.2.)

The game for ¢ and TS proceeds in rounds, where in each round the falsifier
makes a move and the verifier responds. The falsifier states are composed states
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(of k traces), and the verifier states augment them with a record of the falsifier’s
last move. The bad states are falsifier states where all traces are in their obser-
vation points but ¢ does not hold. The falsifier is responsible for choosing the
transitions that define the V traces t;.; assigned to 71, ;. The verifier responds by
choosing the transitions of the 3 traces ¢, 1. assigned to m;41. ;. Here the labels
of the transitions come into play: the players specify the transitions of choice by
picking a label ¢ € L for each trace. (Since TS is deterministic, transitions are
uniquely identified by labels.) The traces then need to be aligned s.t. they syn-
chronize on their observation points defined by &;. The alignment does not affect
the winner of the play, as long as it is a valid alignment. However, as in the case
of k-safety, the alignment is instrumental for obtaining a winning strategy that
has a simple description. As a result, the choice of the (valid) alignment is also
left to the verifier. Altogether, a move of the falsifier consists of picking labels
Ly, ..., 4 € L for the V trace variables; a move of the verifier consists of picking a
valid subset @ # M C {1, ..., k} of the traces to progress (as in Sec. 5) and also
labels ¢;41,...,¢; € L for the 3 trace variables, and proceeding to the resulting
composed state.® In this manner, the verifier iteratively “reads off” the states
of t1.;, properly aligned, and generates the traces t;;1., while avoiding the bad
states. If the verifier can do so indefinitely, then this proves that ¢ holds.

Formally, the components of the game are as follows (here, M represents a
valid schedule according to Definition 1):

FS =§F VS =8k <Lt Sy={5€Sk |5k}
B ={5€FS|s5F¢ands; ¢ forevery 1 <i <k}
5p = {G,G,1) |5 FS, IV e L} 6y ={(G,07),7) |5 %% for 17 € LM}

The notation 5 %' 3 indicates that 3 is obtained from 3 by taking the tran-
sition with label ¢; from s; whenever ¢ € M, and stuttering otherwise, where
0= {ly,...,0). We refer to it as a transition of the composed system accord-
ing to schedule M labeled £. The labels are split into £¥ = (f1,..,4;) and £ =

0
(041, .., 0x). Formally, ERR PN Niers R(si, iy s7) A Nygar si = 85

Ezample 4. In the example of Fig. 5, the labels of transitions are integer values
that reflect the choice of * at lines 2 and 13 (and have no effect on other states).
The verifier and falsifier specify their moves using these labels. For example, in
order to ensure that sumi; = sums is satisfied at every iteration, the verifier
selects a transition label £ = A[i — 1] — AJ7] in line 13, which sets the value of y
accordingly; after both assignments at lines 6 and 14, sum; = sumso holds.

The game semantics of V*3*-OHyperLTL is based on the winner in the veri-
fication game:

Definition 2 (Game Semantics for V*3*-OHyperLTL [8]). Let TS be a
transition system and ¢ a V*3*-OHyperLTL formula. TS satisfies ¢ according

5 In [8], steps of the verifier are split to two. Our definition is more precise in the sense
that a winning strategy in the game of [8] implies a winning strategy in our game.
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to the game semantics, denoted TS |=g ¢, if the verifier has a winning strategy
in the verification game Grg .

Theorem 3 (as shown in [8]). If TS =g ¢ then TS = .

6.1 CHC Encoding of the Game with Finite Branching

To encode the verification game for ¢ and TS, we introduce unknown predi-
cates {Ay }uer that describe the strategy of the verifier as well as an unknown
predicate Inv that encodes an inductive invariant that ensures that the strat-
egy is winning. We first consider the case where the set of labels LL is finite,
i.e., TS has a finite branching. This makes it possible to define U as the set
of all possible concrete choices of the verifier and introduce a predicate A, per
every possible choice of the verifier. To do so, we define U = M x L*~!, where
M = P({1,...,k})\ {@} is the set of possible schedules, and L*~! are the choice
labels for constructing the traces assigned to {m; }i—i+1. k. Note that U is finite
in this case. For each u = (M, ) € U, the predicate A, describes the verifier
states in which the verifier chooses u for its move. Recall that verifier states
consist of both the previous state of the verifier, captured by the composed state
vocabulary V defined as before, and the last move of the falsifier, captured by
label variables (ay, ..., a;). We denote LY = (ay,...,a;), L7 = (a;41,...,ax) and
L=L"UL?={ay,...,a;). Then, the A, predicates are defined over V U L.
The Inv predicate is defined over V only, as it describes a set of falsifier states.
The formulas in Fig. 6a formalize the requirements that ensure that {4},
defines a winning strategy for the verifier, while accounting for the alternating
choices of the falsifier (¢¥) and verifier ((M, £7)) in every round, where
AM(Vv Vl? ‘C) = /\ieM Tr(Vi’ Qi Vzl) A /\iQM Vl = V;/
OV V' LY) = Ay (VY L) [£7 7] Bad(V) = N\, &(Vi) A=o(V)
Ay is the formula expression of el from above. That is, 5,3, ¢ (valuations
to V, V', L) satisfy Ay if the composed system according to M has a transition
from 3 to 3 labeled £. § ar72 is then the projection of Aps to a concrete choice

of labels ¢7 for the existentially quantified traces; the labels for the universals,
captured by LY, remain free.

Theorem 4. The set of formulas in Fig. 6a is satisfiable iff TS =g .

Proof. A solution for Fig. 6a induces a winning strategy x for the verifier in
the game for ¢ and TS: x(5,¢") = 3 for 5 = Inv, where & is reached by
choosing (M, (?) (i.e., 5,5, 07 |= §,,75) such that 5,07 |= A, 7=; such 8 must
exist because the last formula states that there must always be a choice for
the verifier in falsifier states that satisfy Inv. For 5 £ Inv, x(3,£%) is defined
arbitrarily. In the other direction, given a winning strategy for the verifier, we
define the interpretation of Inv to be its winning region and the interpretation
of A,,4s to consist of the falsifier states (3,¢") where the strategy chooses ¥

such that 5,07 |= AM,F'
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N, Init(Vi) A (V)

Inv(V) A Bad(V) —

Inv(V) N Ay 33 (V, L) A —walid v (V) —
Inv(V) N Ay g3 (V, LYY A Sy (VY L) — [nv(V')
v(V) = \/ Ay =(V.L7)

(M, 3)yeU

— Inv(V)

(a)
N\ DuzW) AN Iit(Vi) Ap(V) — L
3eu ¢

Bad(V) = Dy 73(V)
—walidp (V) — DM,ZH V)
/\ DM’yzla (V/) A 61\{,23 (V7 V/) — DM,ZH (V)

(M2 3yeU

[<l<li<s

(b)

Fig. 6: A game formula scheme before (a) and after (b) the transformation, where
=V(M,?) e U.

Remark 2. For k-safety properties, the encoding in Fig. 6a, based on the game
semantics, is equivalent to the encoding in Fig. 4a (Sec. 5). In particular, in this
case, the set £7 is empty, which means that /7 = (), resulting in a game with
finite branching, namely only the choices of the schedule M. Note that for such
properties, the benefits of the game semantics are less obvious since if TS | ¢,
then every strategy is winning for the verifier.

Encoding safety games in general The game encoding in Fig. 6a and Thm. 4
are stated here for the specific safety games corresponding to V*3*-OHyperLTL
verification in order to avoid additional notational burden. However, the result is
applicable to a more general class of safety games where the moves of the players
are organized in rounds, each of which comprises of a move of the falsifier,
followed by a move of the verifier. Furthermore, the states of the verifier are
“intermediate states” defined as VS = FS x {2, where {2 is a set of auxiliary
states used to record the last falsifier move. The initial and bad states are falsifier
states. The verifier moves to a new state according to the previous state together
with the auxiliary state, while the falsifier is only allowed to choose the auxiliary
part of the state. Therefore, op C {(8,(8,w)) | § € FS,w € 2}. The encoding
extends to such games, where Init(V;) A ¢ (V) is replaced by an encoding of Sp;
Bad is replaced by an encoding of B; 5M’zg (V, V', L7) is replaced by an encoding
of 0y o §F as a formula where the falsifier state variables and the choices of the
falsifier are free, and walid (V) is replaced by a guard encoded over the same
free variables that ensures that the verifier step is applicable. Accordingly, our
subsequent results (including the CHC encoding) extend to any such game.
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Applying our transformation to the formulas in Fig. 6a results in the CHCs
in Fig. 6b. Intuitively, A a7 describe the winning strategy for the verifier: for
“safe” states, represented by Inv, and given a move made by the falsifier, if the
verifier chooses to move according to (M, £3), then it stays in the “safe” region.
In contrast, D, 73 represents “doomed” states. Namely, if the verifier chooses

to move according to (M, ¢?) from a state in D, 7z, then the falsifier can force
reaching a bad state for every choice of the verifier in the next steps of the game.

Corollary 2. The set of CHCs in Fig. 6b is satisfiable iff TS =g .

Ezxample 5. The example in Fig. 5 fits the case of finite branching if we assume
that the integer values in the array A and those of sum and t are bounded modulo
2™ and so are the labels L. This means that the falsifier has 2 possible steps at
each game state, and the verifier has 3-2™ (3 is the number of possible schedules
out of {1,2}). In the next subsection we explain how to encode the problem when
the integers are considered to be unbounded.

6.2 CHC Encoding of the Game with Infinite Branching

The set of formulas in Fig. 6a, and the corresponding system of CHCs in Fig. 6b
is well defined when the set U is finite. However, if L is infinite, so is U. In this
case, instead of using L*~! to specify the traces chosen by the verifier, we define
a finite, abstract set of composed labels, denoted Lf, to be used by the verifier
(the falsifier will continue to use the concrete labels to specify his transitions of
choice). Each abstract label in ¥ is a relational predicate p with free variables V
(the composed vocabulary) that relates the states of different traces. Thus, the
vector of individual existential choices 3 of the verifier is now replaced with a
single choice of a (relational) predicate p € ¥ over all the copies. In contrast to
the use of concrete labels to specify the (unique) next transition for each trace
individually, an abstract label p € ¥ determines the next transitions for the 3
traces by relating their post-states to the rest of the composed post-state.

Specifically, given a set of labels £¥ for the V traces and a schedule M, a
predicate p € ! is used as a restriction (inspired by the homonymous concept
from [8]) of the transitions of the composed system according to schedule M
with V-choices /, restricting the set of aforementioned transitions to those where
the composed post-state satisfies p.

Ezxample 6. In Fig. 5, at line 13, a nondeterministic integer value is assigned
to variable t. Since the set of integers is infinite, assigning a unique label ¢ to
each integer results in an infinite set L. To specify the choices of the verifier,
we therefore define a finite set of abstract labels. An example of such a set is
Lf = {sum; = sums, sum; = yo, sumy < yo, sum; = sums + As[iz] + y2}.The
restriction sum; = sums can result in an empty set of transitions (we will return
to this point later in the section); but the restrictions sumi = ya, sum; < yo
and sumy = sumg+ Asliz] +y2 always define a nonempty set of transitions when
pcy = 13 and when a schedule {2} C M is chosen: those transitions that choose a
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value for y5 such that the predicate holds after the transition; there is always at
least one such value. In fact, for sum; = yo and sumq = sumg + Aslis] +y2 there
is exactly one such value, while for sum; < ya, the set of values (transitions) is
infinite. Note that there are transitions that are not selected by any restriction
(those that assign to y2 a value such that none of the predicates hold).

Thus, the abstract labels define a space of underapproximations of the transi-
tions of the composed system. This is an underapproximation since some (com-
binations of) individual transitions of T'S may not be allowed by any p € Lf.

The verifier uses p € L* to specify the transitions of the traces assigned
to the existentially quantified variables 71, ;. We then require that all of the
composed post-states reached by the verifier’s choice (M, p) are winning for the
verifier. This amounts to proving that all restricted traces satisfy U¢, which
would mean that there exist traces that do, as long as the restrictions do not
lead to an empty set of traces. Therefore, to ensure soundness of the encoding,
we require that the restrictions be nonempty. Nonemptiness of the restrictions
also ensures that the choices of the falsifier are never restricted, since the choices
of the falsifier are always singletons (based on the concrete labels).

Rather than limiting the set of predicates used as abstract labels, we ensure
nonemptiness by applying the restrictions only when the resulting set of transi-
tions is nonempty; otherwise, the full set of transitions is considered. Technically,
this is accounted for by special considerations in the construction of the CHC
encoding, as detailed below.

CHC encoding We adapt the formulas in Fig. 6a to the case of abstract labels.
We define U = M x Lf . The formulas from Fig. 6a carry over, except that the
definition of 6,, 7 from the finite branching case is now replaced with daz,,, which
captures the transitions according to the abstract labels, as defined below.

For a schedule @ # M C {1..k} and p € L#, we define allowed; ,, a formula
that is satisfied by 3, £ when some transition is possible from 3 with scheduling
M and V-choice ¥ such that the target composed state satisfies p. This means
that the restriction to p is nonempty. dys,, then applies the restriction of the
composed post-state to p only when allowed (otherwise all transitions remain):

WL L3 Ay (W, VL) Ap(V)
SV V', LY) 2 (3L7 - A (V, V', L)) A (allowed v, (V, L) — p(V'))

The resulting encoding is sound, but, unlike the case of finite branching, not
complete.

2

allowed ., (V, L7) =

Theorem 5. If the set of formulas in Fig. 6a adapted to L is satisfiable, then
TS g ¢

Ezample 7. Going back to the example in Fig. 5, choosing schedule M = {2}
and restriction £# = (sum; = sums + As[is] + y2) when pc, = 13 ensures that
the unique value of yy that satisfies the restriction is selected. With this value
chosen, the assignment of the next line will produce a value of sumsy that is
equal to that of sum;. This gives rise to the following winning strategy (at every
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iteration): (i) schedule {1} with any restriction until pc; = 7; (ii) schedule {2}
until pe, = 13, then schedule {2} again with ¢ = (sum; = sumq + Aslia] + y2),
then {2} again with any restriction; (iii) conclude the iteration by scheduling
{1,2}. As explained, the inductive invariant sum; = sumg is preserved in this
behavior, and there are no “stuck” states (since, by construction of dy;,,, empty
restrictions are lifted to the full set of transitions).

As a corollary of Thm. 5, satisfiability of the aforementioned formulas en-
sures that T'S = ¢. To obtain an equi-satisfiable CHC encoding, we apply the
transformation of Sec. 4. The resulting CHC encoding consists of the formulas in
Fig. 6b adapted to use L! in the same way the formulas in Fig. 6a are adapted.

Corollary 3. If the set of CHCs in Fig. 6b adapted to L is satisfiable, then
TS =g -

7 Evaluation

We implemented our CHC-encoding approach in a tool called HyHorn, on top of
Z3 [23] (4.12.0) through its Python API, using SPACER [35,31] as a CHC solver.
HyHorn takes as input a CFG, or several CFGs, whose transitions are annotated
with two-vocabulary first-order formulas, and constructs a formula expressing
the transition relation Tr. The specification is provided as: (i) a quantifier pre-
fix WV, V3, or ¥W3, (ii) observation points & and (iii) safety condition ¢ that
must hold globally in all observations. From that, the CHC encoding (Sec. 5,
Sec. 6) is constructed and passed to SPACER for solving. HyHorn supports all
first-order theories supported by SPACER (in our experiments, we used the the-
ories of integer arithmetic and arrays). HyHorn further provides the option to
apply predicate abstraction with a user-provided set of predicates, same as [8].
The abstraction is incorporated into the CHC encoding using the implicit ab-
straction encoding [13]. Notably, many of the benchmarks shown here are solved
by HyHorn even without an abstraction, that is, directly over the concrete state.

In the area of hyperproperty verification, there are already several tools
present, and the objective of our evaluation is to compare with such. Still, the
field is not mature enough to have a standardized specification format (as is the
case with SMTLIB and SV-COMP, to name a few). As a result, each tool has
its own, opinionated, format, which varies from logical formulas to control-flow
graphs. This makes it technically difficult to compare results of multiple solu-
tions. In particular, benchmarks taken from previous work come in a range of
formats, dictated by the tools that introduced them. A few of the benchmarks
were translated by previous authors and, thanks to their efforts, are available
in more than one format. For the majority of them, manual work is required
for translating the benchmarks, and, more importantly, there is no one accepted
translation, and the translation can introduce artifacts in the evaluation.

This forced us to prioritize the comparisons in our experiments. We chose
to focus on comparison with the most closely related tools to our work. These
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k-safety HyHorn  |HyPA|PCSat|PDsc v*3* HyHorn  |HyPA

PA concrete PA concrete
double square NI 0.56 —| 67.0 — 6.8 non-det add | 1.45 2.80 3.3
double square NI ff 0.12 — 5.3 1.5 7 counter sum | 0.09 —1 4.0
half square NI 0.30 0.30| 63.0| 134| 34 async GNI 0.36  0.37| 3.8
squares sum 0.17  3.41] 70.4| 360.7| 2.8 compiler opt 1| 0.14 0.19 1.8
squares sum (simplified)| 0.10  0.30| 17.2| . | .~ compiler opt 2/ 0.17  0.78| 2.0
array insert 0.8 13.4| .~ | 185 refine 0.18 0.29| 4.0
array insert (simplified) | 1.33 ~ 2.58 | 16.2| 378.6| refine 2 0.28 0.65| 3.9
explx3 0.08 0.09 29 “ e smaller 0.16 0.96 2.0
fig 3 [FV19] 0.03 —| 79| “~ e counter diff 0.17 —| 6.8
fig 2 [BF22) 011 —| 136| .~ | .~ fig 3 [BF22] |081  —| 99
col item symm 049 0.49| 149| .~ | .~ P1 (simple) |0.19 0.59| 14
counter det 0.46 —| 62| “ e P1 (GNI) 0.26 0.75|138.7
mult equiv 0.29 —| 142 e P2 (GNI) 8.50 6.65| 12.8
mult equiv (simplified) |0.19 —| 103| . | P3 (GNI) 0.32 0.20| 4.6
array int mod 0.13 —| | 58.2 P4 (GNI) 0.77  0.63| 27.7
mult dist [FV19] 2.25 — | | 7

Table 1: Experimental results for k-safety properties. Time is measured in sec-
onds. “—” represents timeouts after 20 minutes. “/” denotes benchmarks not
present in the respective tool’s suite.

In benchmark names, [FV19] refers to [27]; [BF22] refers to [8].

are HyPA [8], Pdsc [41], and PCsat [45]. HyPA is the most recent tool, and has al-
ready collected benchmarks from various previous papers (including Weaver [27]);
Pdsc and PCsat both use the same first-order encoding as our starting point and
thus are also relevant. HyPA’s benchmarks include, in particular, V*3* examples
such as GNI, and Pdsc targets non-trivial alignments, and, as such all of its
benchmarks have non-lockstep alignments.

Benchmarks For the evaluation of our approach we use the full sets of bench-
marks from HyPA [8] and Pdsc [41]. The benchmarks of HyPA are divided into
k-safety benchmarks, which are adopted from [43,27,41,45], and V*3* bench-
marks, which include refinement properties for compiler optimizations, general
refinement of nondeterministic programs and generalized non-interference (GNI).
For two benchmarks, we include both a simplified version as given in [8], as well
as the original example. The benchmarks of Pdsc include more non-lockstep ex-
amples, as well as all of the comparator benchmarks from [43]. The comparator
examples consist of both safe and unsafe instances. Weaver [27] considers 12
additional (sequential) k-safety benchmarks. As an additional test case, we man-
ually translated the running example from Weaver, which is a 3-safety property
with a nontrivial alignment, and tested it with HyHorn — HyHorn solved it in
2.25 seconds when provided with a few simple predicates (inequalities between
program variables). We believe that being the running example makes it a good
representative of the remaining 12. This brings our benchmark suite to a total
of 112 k-safety examples (16 in Table 1 plus 96 comparator benchmarks).

Ezperiments To demonstrate the effectiveness of HyHorn we compare to HyPA [8],
the most recent approach of formal verification of V*3*-hyperproperties, which
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employs a construction using automata. To exhibit the benefits of the direct CHC
encoding we also compare the k-safety examples to PCSat [45] and Ppsc [41].
Both encode the k-safety problem using FOL formulas as in Fig. 4a. PCSat uses
a specialized solver for pfwCSP (a fragment of FOL that includes these formu-
las), while PDSC solves the FOL formulas by enumerating alignments and using
a CHC solver for each alignment. We do not compare to game solvers since, as
reported by [8], state-of-the-art infinite-state game solvers, such as [26,2], which
work without user-provided predicates, are unable to solve the benchmarks we
consider.

We run HyHorn on the full set of benchmarks, and each of the other tools on
the ones included in their benchmark suite. This is because each tool has its own
input format: HyPA and PDSC each has its own representation for the transition
system and the property; PCSat accepts pfwCSP instances that are constructed
manually. Some of the benchmarks are common to several tools.

All experiments are run on an AMD EPYC 74F3 with 32GB of memory.
HyPA and PCSat are executed in Docker using their published artifacts”.

Results The performance measurements of the tools for the k-safety benchmarks
and for the V*3* benchmarks are shown in Table 1. The results for the compara-
tor examples are deferred to the extended version of the paper [34]. HyHorn
is tested in two modes: with predicate abstraction (“PA”) and without (“con-
crete”). HyPA and PDSC require predefined predicates (the same predicates are
used in all tools), while PCSat does not, but uses hints to solve ‘array insert’
and ‘squares sum’. HyHorn solves almost all of the benchmarks with PA in under
a second, outperforming previous approaches by up to two orders of magnitude;
and also solves most of the benchmarks quickly without PA, esp. the V*3* prop-
erties. In particular, HyHorn solves the two array benchmarks, while HyPA and
PCSat do not support arrays and only solve simplified versions with integers.
The runtime of HyHorn (both with and without predicates) on the comparator
examples is similar to the runtime of PDSC (see [34]), where HyHorn solves some
benchmarks that PDsc does not. (The other tools do not include these bench-
marks.) On the unsafe examples, HyHorn provides a concrete counterexample,
while PDSC is only able to determine that there is no inductive invariant and
alignment expressible with the given set of predicates.

8 Related Work

There is a large body of work studying verification of hyperproperties. While ear-
lier verification techniques mostly focus on k-safety properties, or specific exam-
ples such as program equivalence, monotonocity, determinism [5,44,3,30,43,47]
[24,27,41,1], lately verification of non-safety hyperproperties has been studied
[4,16,45,7,8]. Below we discuss the works closest to ours.

" We evaluated HyHorn in Docker as well. There were no meaningful differences in
runtime.
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k-Safety Automatic verification of k-safety properties can be achieved by re-
ducing the problem to a standard safety verification problem by means of self-
composition [5], product-programs [3], and their derivatives [47,24]. Recently,
however, it was identified that the alignment of the different copies has a sub-
stantial effect over the complexity of the verification problem [41,27,12]. Our
approach is most related to the technique of Shemer et al. [41], which uses a se-
mantic alignment that chooses which copy of the system performs a move based
on the composed state of the different copies. They suggest an algorithm that
iterates through the set of possible semantic alignments, such that in each itera-
tion a CHC solver tries to prove the property, with the chosen alignmnet, using
predicate abstraction. Unlike [41], HyHorn delegates the search for the alignment
to the CHC solver, together with the search for the invariant, making the algo-
rithm less dependent on predicate abstraction. Moreover, while [41] is restricted
to k-safety only, our technique can handle k-safety as well as the more general
V*3*-OHyperLTL.

V*3* Hyperproprties Recently, verification of V*3* hyperproperties has been
studied, targeting both finite and infinite systems [45,16,8]. Unno et al. [45]
present an approach based on an encoding of hyperproperties verification as
satisfiability of formulas in FOL that extend Horn form with disjunctions, ex-
istential quantification and well founded relations. Deciding satisfiability of the
generated set of formulas is based on a variant of the CEGIS framework. Hy-
Horn is different as it encodes V*3*-OHyperLTL verification as a set of CHCs,
which does not require a specialized solver and can use any off-the-shelf CHC
solver. Coenen et.al. [16] suggested a game-based approach for verification of
V*3* properties over finite-state systems, which was then extended by Beutner
et al. [8] to handle infinite-state systems. Similarly to [8], we use game semantics
to solve V*3* problems, but do not require building the game-graph in order
to solve the game, instead reducing the game solution to satisfiability of CHCs.
It is important to note that in the case of infinite branching degree, while the
approach in [8] explicitly checks for emptiness of restrictions in hindsight, i.e.,
after they are used in a strategy, and removes them iteratively if needed, HyHorn
embeds the emptiness requirements into the set of CHCs. Recently, [7] extended
the game-based approach to use prophecy variables as a way to achieve com-
pleteness of the reduction to games. Extending our approach to this case is a
promising avenue for future research.

Relational CHCs [40] present a method for discovering relational solutions to
CHCs. Their setting is different: the inputs are CHCs that serve as the definition
of the transitions, and synchronization is between sets of unknown predicates;
at the current state, only lock-step semantics is considered. Furthermore, their
algorithm extends and modifies SPACER [35], while our approach can use any
CHC solver without modification.

Infinite-State Game Solving Our approach for verifying V*3* hyperproperties
is based on the game semantics of V*3*-OHyperLTL proposed in [16,8]. How-
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ever, we do not propose a general game solving algorithm. Instead, we use the
game semantics to come up with a first-order encoding of hyperproperty verifi-
cation problems, which is then reduced to CHC solving. This allows us to use
any CHC solver when solving the hyperproperty game. There is a large body
of work on solving infinite-state games [21,9,46,26]. The game solving approach
in [46] uses three-valued predicate abstraction to reduce the problem to finite-
state game solving and requires to iteratively refine the controllable predecessor
operator when computing candidate winning states. The approach in [26] tar-
gets games defined over the theory of linear real arithmetic and is based on an
unrolling of the game and the use of Craig interpolants [18] to synthesize a win-
ning strategy. The game solver in [2] is not restricted to a given FOL theory, but
requires an interpolation procedure in order to compute sub-goals that are used
to inductively split a game into sub-games. As reported by [8], game solving ap-
proaches [26,2], which work without a provided set of predicates, are unable to
handle the infinite-state games for the benchmarks we consider. Moreover, the
approaches in [26,16,2,8] cannot handle games that are defined using formulas
over the theory of arrays, which are part of our benchmark. The approach of [9]
to solving games over infinite graphs is based on reduction of games (including
safety games) to CHCs. However, unlike the reduction presented in this paper,
in [9] the games are encoded in a different fragment of Horn, namely V3-Horn
where the head predicates can contain existential quantifiers. More recently (and
concurrently with our work), [25] proposed a new reduction of game solving to
CHC solving. Their approach handles safety games in which the branching de-
gree of the “safe” player (the verifier in our setting) is bounded. In contrast,
our encoding supports also infinite branching with the restrictions mechanism.
Moreover, they do not support predicate abstraction, which is crucial for solving
some of our benchmarks.

Restrictions as Underapprorimations The use of restrictions as underapproxma-
tions of the transition relation, inspired by [8], corresponds to the use of must
hyper-transitions [36] in abstract transition systems [42,19] and games [20,22].
Similarly to [29,17], we use such underapproximations to replace an existential
quantifier by universal quantification within the restriction.

9 Conclusion

We introduced a translation of a family of non-Horn first-order formulas to
CHCs. This translation led to the first CHC encoding of a simultaneous infer-
ence of an invariant and an alignment for verifying k-safety properties. While
the transformation itself is rather simple, identifying it was not straightforward
and alluded previous works on the topic. We have further extended the CHC en-
coding to infer a witness function for existentially quantified traces arising in the
verification of V*3*-OHyperLTL properties. Our experiments exhibit significant
improvement over state-of-the-art hyperproperty verifiers thanks to the existence
of advanced off-the-shelf CHC solvers, whose efficacy is expected to improve even
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further. The approach shows promising capabilities in solving (many) hyeprprop-
erty verification problems completely automatically. In some cases, predicates
still have to be provided by the user, a limitation that we hope to overcome
in the future by automatic inference of predicates. Applying (or extending) the
transformation to obtain CHC encoding for other verification fragments is an
interesting direction for future work.
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