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Abstract. Condition synthesis takes a program in which some of the conditions
in conditional branches are missing, and a specification, and automatically infers
conditions to fill-in the holes such that the program meets the specification.
In this paper, we propose COSYN, an algorithm for determining the realizability
of a condition synthesis problem, with an emphasis on proving unrealizability
efficiently. We use the novel concept of a doomed initial state, which is an initial
state that can reach an error state along every run of the program. For a doomed
initial state σ, there is no way to make the program safe by forcing σ (via condi-
tions) to follow one computation or another. COSYN checks for the existence of
a doomed initial state via a reduction to Constrained Horn Clauses (CHC).
We implemented COSYN in SEAHORN using SPACER as the CHC solver and
evaluated it on multiple examples. Our evaluation shows that COSYN outper-
forms the state-of-the-art syntax-guided tool CVC5 in proving both realizability
and unrealizability. We also show that joining forces of COSYN and CVC5 out-
performs CVC5 alone, allowing to solve more instances, faster.

1 Introduction

The automated synthesis of imperative programs from specifications is a very fruit-
ful research area [26,1,27,18,9,28,22,25,16]. Our paper focuses on the important sub-
problem of condition synthesis. Condition synthesis receives as input a partial program,
where conditions are missing in conditional branches (e.g., if statements), and a spec-
ification. A solution to this problem is a set of conditions to fill-in the holes such that
the resulting program meets the specification. If such a solution exists, the problem is
realizable, otherwise it is unrealizable.

The main motivation for condition synthesis is automated program repair. The prob-
lem naturally arises whenever the source of a bug is believed to be in a conditional
branch, and the condition has to be replaced for the program to be correct. Studies on
repair have shown that many real-life bugs indeed occur due to faulty conditions [29].
Several program repair methods focus on condition synthesis [19,6,29]. These algo-
rithms, however, do not guarantee formal verification of the resultant program, but only
that it passes a certain set of tests used as a specification.

In this work, we propose COSYN, a novel algorithm for determining the realiz-
ability of a condition synthesis problem, with an emphasis on proving unrealizability
efficiently. We use a formal safety specification and conduct a search guided by seman-
tics rather than syntax. Importantly, COSYN’s (un)realizability results are accompanied
by an evidence to explain them.



Our semantics-guided search is based on the novel concept of doomed initial states.
An initial state is called doomed if it eventually reaches an error state along every run of
the program. For a doomed initial state σ, there is no way to make the program safe by
forcing σ (via conditions) to follow one computation or another. It will lead to a failure
anyway. Thus, the existence of such a state constitutes a proof that conditions cannot be
synthesized at all, regardless of syntax.

To check for the existence of a doomed initial state, COSYN uses a reduction to
Constrained Horn Clauses (CHC). CHC is a fragment of First-Order Logic, associated
with effective solvers [4]. Our reduction constructs a set of CHCs that are satisfiable iff
the condition synthesis problem is realizable, and utilizes a CHC solver to solve them.

When COSYN finds a problem unrealizable, its answer is accompanied by a wit-
ness: an initial doomed state. When it finds a problem realizable, it returns a realizabil-
ity proof. A realizability proof consists of two parts: a constraint defining a range of
conditions for each hole in the program, and a correctness certificate. The range of con-
ditions for a hole in location l is defined using two logical predicates, Ψf (l) and Ψ t(l).
Every predicate Ψ(l) for which the implication Ψf (l) =⇒ Ψ(l) =⇒ Ψ t(l) holds (in
particular Ψf (l) and Ψ t(l)), is a valid solution for the hole in location l. Moreover, the
certificate is a proof for the safety of the program when using Ψ(l) as a solution.

An important feature of COSYN is that it can complement existing synthesis algo-
rithms such as syntax-guided-synthesis (SYGUS) [1]. SYGUS limits the search-space
to a user-defined grammar, hence ensuring that if a solution is found, it is of a user-
desired shape. However, if a SYGUS algorithm determines the problem is unrealizable,
it is with respect to the given grammar. Instead, one can use COSYN to determine if the
problem is realizable or not. In the case that the problem is realizable, the implication
Ψf (l) =⇒ Ψ(l) =⇒ Ψ t(l), and a grammar can be given to a SYGUS algorithm,
which then synthesizes a solution that conforms with the given grammar. Note that the
input problem to the SYGUS algorithm is now much simpler (as evident in our exper-
imental evaluation). This strategy can assist users as it can indicate if a solution exists
at all, or if debugging of the specification is required (when unrealizable). Moreover, it
can reduce the burden from an iterative synthesis process that searches for a solution in
the presence of increasingly many examples or increasingly complex grammars. This
is achieved by detecting unrealizability up-front.

We implemented COSYN in an open-source tool on top of SEAHORN, a program
verification tool for C programs. We created a collection of 125 condition synthesis
problems by removing conditions from verification tasks in the TCAS and SVCOMP
collections and by implementing several introductory programming assignments with
missing conditions. We conducted an empirical evaluation of COSYN against the state-
of-the-art SYGUS engine implemented in CVC5 on our benchmark collection. Two
different variants were compared. In the first, we compare COSYN and CVC5 without a
grammar. In the second, a grammar was supplied, and we compare the performance of
COSYN in conjunction with CVC51 against CVC5 alone. The experiments show that in
both variations, with and without grammar, COSYN solves more instances, both realiz-
able and unrealizable. The advantage of COSYN is most noticeable on the unrealizable

1 Where COSYN is executed, and CVC5 is then invoked on the given grammar and implication
Ψf (l) =⇒ Ψ(l) =⇒ Ψ t(l).
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(a) Gex1

⊤ → pinit

pinit ∧ (x > 8) ∧ (X′ = X) → p′
0

pinit ∧ (x ≤ 8) ∧ (X′ = X) → p′
1

p0 ∧ (z′ = x) ∧ (x′ = x) ∧ (y′ = y) → p′
4

p1 ∧ (x <= −8) ∧ (X′ = X) → p′
2

p1 ∧ (x > −8) ∧ (X′ = X) → p′
3

p2 ∧ (z′ = −x) ∧ (x′ = x) ∧ (y′ = y) → p′
4

p3 ∧ (z′ = 9) ∧ (x′ = x) ∧ (y′ = y) → p′
4

p4 ∧ (y ≥ 3) ∧ (X′ = X) → p′
5

p4 ∧ (y < 3) ∧ (X′ = X) → p′
7

p5 ∧ (z′ = z + 1) ∧ (x′ = x) ∧ (y′ = y) → p′
6

p6 ∧ (y′ = y − 3) ∧ (z′ = z) ∧ (x′ = x) → p′
4

p7 ∧ (¬(z ≥ 9 ∧ z ≥ x ∧ z ≥ −x)) ∧ (X′ = X) → p′
err

perr → ⊥

(b) ΠGex1

Fig. 1: The CFG Gex1 (left) and the set of CHCs ΠGex1 (right).

problems. Further, COSYN, in both variants, performs better w.r.t. runtime. This leads
us to conclude that COSYN can be an important addition to existing SYGUS tools.

To summarize, the main contributions of our work are:

– A novel algorithm, called COSYN, for solving the (un)realizability problem of con-
dition synthesis via a non-standard reduction to Constrained Horn Clauses (CHC).
To the best of our knowledge, COSYN is the first algorithm to determine that a
condition synthesis problem is unrealizable w.r.t. any grammar.

– COSYN’s results are supported by an evidence: either a doomed initial state (for an
unrealizable problem), or a realizability proof (for a realizable problem) that can be
used by a synthesis tool to generate a solution w.r.t. a given grammar.

2 Preliminaries

2.1 Program Safety

To represent programs, we use control-flow-graphs with transitions encoded as logical
formulas. We consider First Order Logic modulo a theory T and denote it by FOL(T ).
T is defined over signature ΣT . We denote by X a set of variables representing program
variables. A valuation σ of X is called a program state. We use the set Xi = {xi | x ∈
X} to represent variable values after i computation steps, where i ≥ 1. For the special
case of i = 1 (one computation step) we also use the set X ′ = {x′ | x ∈ X}. A state
formula is a (quantifier-free) formula in FOL(T ) defined over the signature ΣT ∪X . A
transition formula is a (quantifier-free) formula in FOL(T ) defined over the signature
ΣT ∪X ∪X ′.
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A control-flow-graph (CFG) is a tuple G = (Λ,∆, linit, lerr, Λcond), where Λ is a
finite set of program locations, ∆ is a set of transitions, linit ∈ Λ is the initial location
and lerr ∈ Λ is the error location. A transition τ is a triple ⟨l, φ,m⟩, where l,m ∈ Λ are
respectively the entry and exit locations of the transition, and φ is a transition formula.
The set Λcond ⊂ Λ is a set of locations, called condition locations, each of which
having exactly two outgoing transitions in ∆, representing a condition and its negation.
Formally, for every condition location lc ∈ Λcond, there exist two distinct locations
lfc , l

t
c ∈ Λ and a state formula θc such that the only two outgoing transitions from lc in

∆ are ⟨lc, θc∧(X ′ = X), ltc⟩ and ⟨lc,¬θc∧(X ′ = X), lfc ⟩ (where the notation X ′ = X
is short for the conjunction of equalities between each variable and its primed version).
A path π in the CFG is a sequence of transitions from ∆ of the form

π = ⟨l0, φ0, l1⟩⟨l1, φ1, l2⟩⟨l2, φ2, l3⟩ · · ·

The path is an error path if it is finite and, in addition, l0 = linit and ln = lerr for some
n ≥ 0. Let απ be a sequence of formulas representing π. That is,

απ = φ0(X
0, X1), φ1(X

1, X2), φ2(X
2, X3) · · ·

A run along path π from state σ is a sequence of states r = σ0, σ1, σ2 . . ., where
σ = σ0 and for every i ≥ 0, σi is a valuation of variables Xi, such that (σi, σi+1) |=
φi(X

i, Xi+1). In that case, we say that r starts at l0. Path π is feasible if there is a run
along it. If a run r = σ0, σ1, σ2 . . . along π starts at linit (i.e., l0 = linit) then for every
i ≥ 0 we say that state σi is reachable at li.

A safety verification problem is to decide whether a CFG G is SAFE or UNSAFE.
G is UNSAFE if there exists a feasible error path in G. Otherwise, it is SAFE.

Example 1. The CFG Gex1 is presented in Figure 1(a), where Λcond = {ℓinit, ℓ1 ℓ4}.
The Assertion at l7 is (z ≥ 9∧z ≥ x∧z ≥ −x). The path π = ⟨linit, x ≤ 8, l1⟩⟨l1, x ≤
−8, l2⟩⟨l2, z′ = −x, l4⟩⟨l4, y < 3, l7⟩⟨l7,¬assert, lerr⟩ is a feasible error path in Gex1:
there is a run along π from state σ, where σ(x) = −8 and σ(y) = σ(z) = 0. Conse-
quently, the CFG Gex1 is UNSAFE.

2.2 Constrained Horn Clauses

Given the sets F of function symbols, P of uninterpreted predicate symbols, and V of
variables, a Constrained Horn Clause (CHC) is a First Order Logic (FOL) formula of
the form:

∀V · (ϕ ∧ p1(X1) ∧ · · · ∧ pk(Xk) → h(X)), for k ≥ 1

where: ϕ is a constraint over F and V with respect to some background theory T ;
Xi, X ⊆ V are (possibly empty) vectors of variables; pi(Xi) is an application p(t1, . . . , tn)
of an n-ary predicate symbol p ∈ P for first-order terms ti constructed from F and Xi;
and h(X) is either defined analogously to pi or is P-free (i.e., no P symbols occur in
h). Here, h is called the head of the clause and ϕ∧ p1(X1)∧ . . .∧ pk(Xk) is called the
body. A clause is called a query if its head is P-free, and otherwise, it is called a rule.
A rule with body true is called a fact. We say a clause is linear if its body contains at
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most one predicate symbol, otherwise, it is called non-linear. For convenience, given a
CHC C of the form ϕ ∧ p1(X1) ∧ · · · ∧ pk(Xk) → h(X)), we will use head(C) to
denote its head h(X). We refrain from explicitly adding the universal quantifier when
the set of variables is clear from the context.

A set Π of CHCs is satisfiable iff there exists an interpretation I such that all clauses
in Π are valid under I. For p ∈ P we denote by I[p] the interpretation of p in I.

2.3 Program Safety as CHC Satisfiability

Given a CFG G = (Λ,∆, linit, lerr, Λcond), checking its safety can be reduced to
checking the satisfiability of a set ΠG of CHCs [4], as described below. For each pro-
gram location l ∈ Λ, define an uninterpreted predicate symbol pl. ΠG is then defined as
the set of the following CHCs:

1. ⊤ → pinit(X)
2. pl(X) ∧ φ → pm(X ′) for every ⟨l, φ,m⟩ ∈ ∆
3. perr(X) → ⊥

Note that this formulation assumes there are no function calls in the CFG, and that
all function calls in the original program are inlined. This also implies that the resulting
CHCs are linear. When clear from the context, we omit X and X ′ from pl(X), pl(X ′)
and φ(X,X ′). Instead, we write pl, p′l and φ, respectively.

Example 2. Consider again the CFG Gex1, presented in Figure 1(a), and its correspond-
ing set of CHCs, ΠGex1 , given in Figure 1(b). For brevity, we write pi as short for
pi(x, y) and p′i as short for pi(x′, y′). As shown in Example 1, Gex1 is UNSAFE and
therefore there is no satisfying interpretation for its predicate symbols.

Lemma 1. Let pi be the predicate symbol associated with location li in a CFG G.
Assume that ΠG is satisfiable by the interpretation I. Then, the interpreted predicate
I[pi] has the property that for every state σ, if σ is reachable at li (from linit), then
σ |= I[pi].

3 From Realizability to CHC Satisfaibility

In this section we describe the synthesis problem we solve, named condition synthesis.
We also show how realizability of this problem can be reduced to satisfiability of a set
of CHCs. From this point on, we assume that all function calls in the original program
are inlined. This implies that the set of CHCs representing the program’s CFG contains
only linear clauses.

3.1 Defining the Condition Synthesis Problem

Given a set of condition locations specified by the user, the goal of condition synthesis
is to automatically find conditions to be placed in these locations so that the program
becomes correct. We start by formally defining a program in which the conditions at
some of the condition locations are missing. Intuitively, such a location imposes no
constraint on the continuation of the program execution at that location. Hence, the
resulting program behaves non-deterministically.
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(a) Gnd

pinit → ⊥

p′
0 ∧ p′

1 ∧ (X′ = X) → pinit

p′
2 ∧ p′

3 ∧ (X′ = X) → p1

p′
4 ∧ (z′ = x) ∧ (x′ = x) ∧ (y′ = y) → p0

p′
4 ∧ (z′ = −x) ∧ (x′ = x) ∧ (y′ = y) → p2

p′
4 ∧ (z′ = 9) ∧ (x′ = x) ∧ (y′ = y) → p3

p′
5 ∧ (y ≥ 3) ∧ (X′ = X) → p4

p′
7 ∧ (y < 3) ∧ (X′ = X) → p4

p′
6 ∧ (z′ = z + 1) ∧ (x′ = x) ∧ (y′ = y) → p5

p′
4 ∧ (y′ = y − 3) ∧ (z′ = z) ∧ (x′ = x) → p6

p′
err ∧ (¬(z >= 9 ∧ z >= x ∧ z >= −x)) ∧ (X′ = X) → p7

⊤ → perr

(b) ΠS

Fig. 2: The non-deterministic CFG Gnd with two non-deterministic nodes {linit, l1}
(left) and the set of CHCs ΠS (right).

Definition 1. Let G be a CFG. A condition location lc ∈ Λcond is called non-deterministic
if the two outgoing transitions from lc have the following form: ⟨lc, X ′ = X, ltc⟩ and
⟨lc, X ′ = X, lfc ⟩. If G has a non-deterministic condition location, we say that G is
non-deterministic.

Example 3. The left-hand-side of Figure 2 presents the non-deterministic CFG Gnd,
which is identical to the CFG Gex1 of Figure 1, except that locations {linit, l1} are non-
deterministic. The transitions leaving those locations are labeled with expressions of
the form ? or ¬?, to indicate that no condition is associated with these locations.

A non-deterministic CFG G can be transformed into a deterministic CFG by re-
placing every non-deterministic control location with a deterministic condition2. More
formally,

Definition 2. Let G = (Λ,∆, linit, lerr, Λcond) be a non-deterministic CFG and Λ?
cond ⊆

Λcond be the set of non-deterministic control locations. Let Ψ : Λ?
cond → Γ be a func-

tion where for every ls ∈ Λ?
cond, Ψ(ls) ∈ Γ is a predicate over the set of program vari-

ables. Ψ is called a resolving function. The resolved CFG GΨ = (Λ,∆Ψ , linit, lerr, Λcond),
is defined as follows.

– For l ∈ (Λ \ Λ?
cond) and for a formula φ and m ∈ Λ. If ⟨l, φ,m⟩ ∈ ∆, then

⟨l, φ,m⟩ ∈ ∆Ψ

2 We emphasize that a deterministic CFG can still contain non-deterministic assignments. In the
context of CFG, non-determinisim only refers to the form/structure of the CFG.
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– For ls ∈ Λ?
cond, the only two transitions out of ls in ∆Ψ are

⟨ls, Ψ(ls) ∧ (X = X ′), lts⟩ and ⟨ls,¬Ψ(ls) ∧ (X = X ′), lfs ⟩

We define the synthesis problem as S = (G, Λ?
cond), where G is a non-deterministic

CFG and Λ?
cond is the set of non-deterministic condition locations. A solution to S is a

resolving function Ψ : Λ?
cond → Γ such that GΨ is deterministic and SAFE.

3.2 Reducing Condition Synthesis Realizability to CHC Satisfiability

A realizability problem is to determine whether a given synthesis problem S has a solu-
tion or not. In this section we show how the problem of condition synthesis is reducible
to the CHC satisfiability problem. In what follows we refer to realizability w.r.t. the
condition synthesis problem given by S = (G, Λ?

cond), where G is non-deterministic
and Λ?

cond is the set of non-deterministic control locations.

Doomed States To explain the reduction of realizability to CHC, we first introduce the
notion of doomed states.

Definition 3. A state σ is doomed at location li if every run from σ, starting at li,
reaches the error location lerr.

Note that, in particular, all runs from a state that is doomed at li are finite.
Intuitively, given a synthesis problem S, if there exists a doomed state at location

linit, then S is unrealizable. Recall that S = (G, Λ?
cond), and G is non-deterministic.

Hence, if an initial state σ is doomed, then no matter which conditions are chosen for
the non-deterministic control locations in G, σ can reach the error location along every
run. We exploit this observation to reduce the (un)realizability problem to identifying
initial doomed states in a non-deterministic CFG, or proving their absence.

Example 4. Consider again the non-deterministic CFG Gnd, presented in Figure 2. The
realizability problem in this case is to determine whether the synthesis problem S =
(Gnd, {linit, l1}) has a solution or not.

Note that a state σ in which σ(x) = 10 and σ(y) = 0 is doomed at location l1: All
runs from this state starting at l1 end up in lerr. In contrast, no state is doomed at the
initial location linit. That is, from any such state it is possible to find a run that does
not proceed to lerr. As we will see later, this implies that the synthesis problem has a
solution – we can assign conditions to linit and l1 s.t. the resulting program is SAFE.

Realizability to CHC Finding the set of states that can reach lerr along some run
from a given location l ∈ G can be achieved by iteratively computing the pre-image of
bad states, starting from lerr up to the location l. Note that if there exists a condition
location on paths from l to lerr, then the union of the pre-image along the “then” and
“else” branches is computed.

In order to find doomed states, however, a non-deterministic condition location
should be handled differently. Whenever the pre-image computation reaches a non-
deterministic condition location ls, the pre-image computed along the “then” and “else”
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branches need to be intersected. The result of this intersection is a set of states that reach
lerr along every run that starts in ls.

In what follows we describe how to construct a set of CHCs that captures doomed
states. The construction is based on a transformation from the original set of CHCs ΠG ,
and has two phases, described below. Due to lack of space, all proofs in the following
sections are deferred to the full version.

Reversed CHC Assume that for S = (G, Λ?
cond), ΠG is a set of CHCs originating

from G using the procedure presented in section 2.3. As described above, computing
doomed states requires computing the pre-image of states that can reach lerr. Hence,
the first step of our reduction is to construct a new set of CHCs ΠR

G , referred to as
the reverse of ΠG . As the name implies, ΠR

G is obtained by reversing the polarity
of uninterpreted predicates in every clause. More precisely, a predicate that appears
positively appears negatively in the reversed clause, and vice-versa. For example, if
p(X) ∧ φ(X,X ′) → q(X ′) is a clause in ΠG , then q(X ′) ∧ φ(X,X ′) → p(X), is
a clause in ΠR

G . Reversing a set of CHCs is performed using simple syntactic rules.
We emphasize that this transformation is only applicable for linear CHCs. Reversing a
non-linear CHC results in a clause that is not in Horn form.

Note that for a transition ⟨l, φ,m⟩, the clause pl(X) ∧ φ(X,X ′) → pm(X ′) cap-
tures the image operation. Namely, a given set of states in location l and their set of
successors in location m satisfy the clause. Similarly, the reversed clause pm(X ′) ∧
φ(X,X ′) → pl(X) captures the pre-image operation. Meaning, a given set of states in
location m and their predecessors at location l satisfy the reversed clause.

Theorem 1. For every CFG G, ΠG is satisfiable iff ΠR
G is satisfiable.

Proof (sketch). Let I be an interpretation that satisfies ΠG . Then, IR[pl] = ¬I[pl] for
every location l ∈ Λ is a satisfying interpretation for ΠR

G . In the other direction, define
I[pl] = ¬IR[pl], which satisfies ΠG .

Lemma 2. Let pi be the predicate symbol associated with label li in the CFG G. As-
sume that the reverse of ΠG , ΠR

G , is satisfiable by the interpretation IR. Then, for every
state σ, if σ is a start of a run along a path from li to lerr, then σ |= IR[pi].

Doomed States in Reversed CHCs Reversing the set of CHCs allows us to capture the
pre-image of lerr. This, as noted, is only the first step. Recall that in order to identify
doomed states, whenever a non-deterministic condition location is reached, the pre-
image of the “then” branch must be intersected with the pre-image of the “else” branch.

For a given non-deterministic condition location ls ∈ Λ?
cond, the reversed set of

CHCs, ΠR
G , contains the following two clauses:

pts(X
′) ∧ (X = X ′) → ps(X) and pfs (X

′) ∧ (X = X ′) → ps(X),

where pts and pfs represent the pre-image of the “then” branch and “else” branch, re-
spectively. As described above, the intersection of the pre-image along the “then” and
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“else” branches represents the doomed states. In order to represent this intersection, the
second phase of the transformation replaces every two such clauses with the clause:

pts(X
′) ∧ pfs (X

′) ∧ (X = X ′) → ps(X).

We denote the resulting set of CHCs as ΠS .

Example 5. Consider again the non-deterministic CFG Gnd, presented in Figure 2. The
right-hand-side of the figure presents the set ΠS of CHCs, which capture the doomed
states in the control locations of Gnd. Assume IS is a satisfying interpretation for ΠS .
Since IS satisfies the clause pinit → ⊥ in ΠS , then necessarily IS [pinit] = ⊥, which
means that no initial state of Gnd is doomed. As proved later, this guarantees that the
synthesis problem S = (Gnd, {linit, l1}) is realizable.

Lemma 3. Let pi be the predicate symbol associated with location li in the CFG G.
Let IS be an interpretation satisfying ΠS of G. Then, for every state σ, if it is doomed
at location li, then σ |= IS [pi].

The following theorem states that the satisfiability of ΠS determines the realizabil-
ity of S = (G, Λ?

cond). In fact, given a satisfying interpretation for ΠS , it is possible
to construct solutions to the synthesis problem S = (G, Λ?

cond). Further, if ΠS is not
satisfiable, then the synthesis problem is unrealizable.

Theorem 2. S = (G, Λ?
cond) is realizable iff ΠS is satisfiable.

We partition the proof of the theorem into two. Below we present the first direction. In
Section 4 we prove the second direction of the theorem.

Lemma 4. If S = (G, Λ?
cond) is realizable then ΠS is satisfiable.

4 Realizability and the Satisfying Interpretation of ΠS

In this section we first show that if ΠS is satisfiable, then there exists a solution to the
realizability problem. Later in Section 4.2, we show how such a solution, i.e. a resolving
function, can be constructed. By that, we also prove the other direction of Theorem 2.

Lemma 5. If ΠS is satisfiable, then there exists a resolving function Ψ that solves
S = (G, Λ?

cond). That is, GΨ is SAFE.

The above lemma implies that in the case where ΠS is satisfiable, then S is realiz-
able. Before describing how the resolving function is constructed, we develop both the
intuition and the needed technical material in the following section.

9



4.1 The Role of The Resolving Function

Let S = (G, Λ?
cond) be a synthesis problem such that ΠS is satisfiable, and IS is its

satisfying interpretation. We wish to find a solution Ψ of S.
Recall that for a location li ∈ Λ and its associated predicate pi ∈ ΠS , IS [pi] is an

over-approximation of states that are doomed at li (Lemma 3). Clearly, if a synthesized
program has a reachable state that is also doomed, then the program is not SAFE. Hence,
the goal is to synthesize a program where for every location li ∈ Λ, the set of states
IS [pi] is not reachable at location li.

The synthesis procedure can only affect non-deterministic locations, we therefore
consider l ∈ Λ?

cond with its “else” and “then” branches, represented by lf and lt, re-
spectively, and their associated predicates p, pf and pt 3.

Let Ψ be a resolving function for S = (G, Λ?
cond) (by Lemma 5, Ψ exists). We can

view Ψ(l) as a router, directing program states that reach l to either the “then” branch
(i.e., lt) or the “else” branch (i.e., lf ). Intuitively, this router must ensure doomed states
are unreachable at the “then” and “else” branches. As an example, if a state is doomed
at lf , Ψ(l) “routes” it to the “then” branch (namely, to lt) and hence it never reaches lf .

To generalize this example, let us denote by D, Df and Dt, the exact sets of doomed
states (non-approximated) at locations l, lf and lt, respectively. Since Ψ is a resolving
function, D, Df and Dt must be unreachable at locations l, lf and lt, respectively.

First, let us consider the set D. Note that, D = Df ∧Dt, since a state is doomed
at l iff it is doomed at both lf and lt. Since Ψ is a resolving function, we conclude
that states in D must be unreachable at location l (otherwise, the synthesized program
cannot be SAFE). This implies that Ψ(l) can direct states that are in D to either the
“then” or “else” branch.

Next, consider the set Df . To ensure that this set is unreachable at lf , all states in
Df that are reachable at l must be directed to the “then” branch (i.e. to lt) by Ψ(l).
We emphasize that given the fact that D is unreachable, only states in Df\D can be
reachable in l. Symmetrically, all states in the set Dt that are reachable at l (namely,
states in Dt\D) must be directed to the “else” branch by Ψ(l).

To summarize the above intuition, Figure 3 presents guidelines for defining the func-
tion Ψ(l). It illustrates the sets Df and Dt inside the universe of all program states (i.e.,
all possible valuations of X) using a Venn diagram. There are four regions in the di-
agram, defining how Ψ(l) behaves: states in Df\D are directed to the “then” branch;
states in Dt\D are directed to the “else” branch; and states in the Φ regions (states in
D and in (Dt ∪Df )c) can be directed to either branch.

4.2 Defining a Resolving Function

As described in Section 3, for a location l ∈ Λ with an associated predicate p, IS [p] is
an over-approximation of states that are doomed at location l. We thus need to construct
Ψ such that it directs states to the proper branch using the given over-approximations of
doomed states, such that states in IS [p] are unreachable in GΨ at location l.

Based on the above we can use the satisfying interpretation IS in order to define
the resolving function Ψ . We define two possible resolving functions: Ψf and Ψ t. We

3 For readability, in this section we omit s from ls, l
f
s , l

t
s and their corresponding predicates.
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Df Dt

Df\D
should be
directed to
”then”

Dt\D
should be

directed to
”else”

Df ∧Dt

Φ
(should be

unreachable)

¬Df ∧ ¬Dt Φ (good either way)

Fig. 3: Venn diagrams of the precise sets of doomed states, Df and Dt

prove that these two solutions are two extremes of a spectrum, hence defining a space
of possible solutions. Recall that a resolving function Ψ always defines the predicate
for sending states to the “then” branch (i.e., a state is directed to the “then” branch iff it
satisfies Ψ ). Therefore, the resolving functions Ψf and Ψ t are defined as follows:

∀ls ∈ Λ?
cond : Ψf (ls) ≜ IS [pf ](X) ∧ ¬IS [p](X)

∀ls ∈ Λ?
cond : Ψ t(ls) ≜ ¬(IS [pt](X) ∧ ¬IS [p](X)) ≡ ¬IS [pt](X) ∨ IS [p](X)

The following two lemmas prove that solution Ψf behaves as desired. That is, if it
directs a state σ to the “then” branch, then σ is not doomed at lt. Moreover, if it directs it
to the “else” branch, then σ is either not doomed at lf or unreachable at l, and therefore
also unreachable at lf . Similar lemmas can be proved for solution Ψ t.

Lemma 6. Let σ be a state such that σ |= Ψf . Then σ ̸|= Dt.

Lemma 7. Assume that IS [p] is unreachable at l. If σ is a state such that σ ̸|= Ψf ,
then either σ ̸|= Df or σ is unreachable.

The Space of Possible Solutions The functions Ψf and Ψ t defined above are two
extremes of a spectrum defining a space of solutions. More precisely, every function Ψ
that satisfies Ψf → Ψ → Ψ t is a resolving function.

Next, we prove that a function Ψ , such that Ψf → Ψ → Ψ t, is a solution for S =
(G, Λ?

cond). Recall that the goal of our approach is to synthesize a program where for
every location li ∈ Λ, the set of states IS [pi] is not reachable at li. Moreover, the proof
of the following lemma guarantees that GΨ is SAFE by showing that IS is a satisfying
interpretation of ΠR

GΨ
(Theorem 1). Hence, we conclude that in the synthesized program

GΨ , for every location li ∈ Λ, the set of states IS [pi] (which is an over-approximation
of states that reach lerr from li) is not reachable at li.

Lemma 8. Let Ψ be a function s.t. for every l ∈ Λ?
cond the formula

Ψf (l)(X) → Ψ(l)(X) → Ψ t(l)(X)

is valid. Then, Ψ is a solution of S.

Lemma 9. There exists a function Ψ s.t. for every l ∈ Λ?
cond the following formula is

valid: Ψf (l)(X) → Ψ(l)(X) → Ψ t(l)(X)
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Summary Lemma 8 and Lemma 9 prove it is possible to synthesize a resolving func-
tion (in fact, a set of resolving functions) for S using the satisfying interpretation IS of
ΠS . This proves the correctness of the following Lemma:

Lemma 10. If ΠS is satisfiable then S = (G, Λ?
cond) is realizable.

The correctness of Lemma 10 finalizes the proof of Theorem 2.

4.3 Synthesizing a Solution with a Grammar

While COSYN does not require a grammar, in some cases where the problem is re-
alizable, it may be desirable to synthesize a solution of a specific plausible shape. To
achieve this, one can use COSYN in conjunction with a synthesis framework such as
the well-known Syntax Guided Synthesis (SYGUS) framework [1]. SYGUS is a promi-
nent framework for program synthesis with respect to a formal specification. It limits
the search-space to a user-defined grammar G. SYGUS algorithms have the advantage
of ensuring that the solution found, if found, will be of a user-desired shape. However,
they can only determine unrealizability w.r.t. to the given grammar.

In this setting, assume a grammar G is given, COSYN is used in the following way:

(i) Execute COSYN on the given condition synthesis problem. If the problem is un-
realizable, stop and return “unrealizable”.

(ii) If the problem is realizable, use the realizability proof to define a specification: for
every l ∈ Λ?

cond the implication Ψf (l)(X) → Ψ(l)(X) → Ψ t(l)(X) must hold.
(iii) Execute a SYGUS tool on the above specification with the given grammar G (on

a conjunction of all implications, or one by one4).
(iv) Return the synthesized result.

The above shows how COSYN can be used to complement existing synthesis algo-
rithms. In fact, the generated specification for the synthesis tool is much simpler as it
does not need to capture the behavior of the program, only the constraints for each of
the locations. This is evident in our experimental evaluation presented in Section 5.

5 Experimental Results

We implemented a prototype of COSYN on top of the software verification tool SEA-
HORN [10], which uses SPACER [17] as the CHC solver. To evaluate COSYN and
demonstrate its applicability, we compared it against the SYGUS framework.

In order to compare against SYGUS, we implemented a procedure that translates a
condition synthesis problem to SYGUS. We emphasize that since the (partial) program
is given and the specification is program correctness, the translation results in a SYGUS
problem that requires the solver to only synthesize the missing conditions and loop

4 We emphasize that the implications in the different locations are independent, thus allowing
synthesis of the conditions separately, one by one. Separate synthesis of conditions cannot be
done trivially in regular SYGUS, due to the dependency between conditions in the synthesized
program.
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invariants. To solve SYGUS problems, we use CVC5 as it is known to be efficient, as
demonstrated in the SYGUS competition5.

The experiments were executed on an AMD EPYC 7742 64-Core Processor with
504GB of RAM, with a timeout of 60 minutes.

Benchmarks The benchmark suite consists of three collections of C language pro-
grams: TCAS [7], SV-COMP [2], and Introductory.

The TCAS collection is part of the Siemens suite [7], and consists of 41 faulty
versions of a program implementing a traffic collision avoidance system for aircraft.
To make the benchmarks suitable for condition synthesis we removed one or more
conditions from each of the faulty versions and required equivalence to the correct
version as a specification.

The SV-COMP benchmarks are taken from the REACHSAFETY-CONTROLFLOW
category of the SV-COMP competition6, where they are described as “programs for
which the correctness depends mostly on the control-flow structure and integer vari-
ables”. This collection includes three sub-categories: nt-drivers-simplified,
openssl-simplified, and locks. For all SV-COMP benchmarks we selected a
condition to remove at random.

For the Introductory collection we implemented a variety of common introductory
programming tasks including sort algorithms, string and int manipulations, etc. Then,
we removed one or more conditions in different critical points of each algorithm.

Results Two different variants were tested and compared. In the first, no grammar is
given to SYGUS, allowing it to synthesize any Boolean term as the solution7. This un-
restricted mode is similar to how COSYN is unrestricted by a grammar. The second
variant executes SYGUS with a grammar G1. In this variant COSYN executes as de-
scribed in Section 4.3 using the same G1 grammar8.

The table in Figure 4 summarizes the results. For each tool, we count the number of
benchmarks it was able to solve in each category, separated based on the realizability
result. As can be seen from the table, in both variants, with and without a grammar,
COSYN solves the most problems, both realizable and unrealizable. The advantage of
COSYN is most noticeable on unrealizable instances.

Note that, in the second variant COSYN and CVC5 join forces, with the goal of
achieving more syntactically appealing conditions. Note, however, that this effort some-
times leads to a timeout, as demonstrated in the table in Figure 4, on lines 1 and 5, on
the R (realizable) column. The “left” and “right” operands of the + sign that appears in
the T column differentiate timeout results which are due to COSYN and CVC5, respec-
tively. As expected, combining COSYN and CVC5 does not influence the unrealizability

5 Its predecessor, CVC4, won the competition in most categories: https://sygus.org/
comp/2019/results-slides.pdf

6 https://sv-comp.sosy-lab.org/2022/benchmarks.php
7 We used CVC5’s default configuration, except for the addition of
sygus-add-const-grammar flag, following the advice of CVC5’s developers.

8 G1 is a standard grammar allowing comparisons (e.g. =, ≤, etc.), using arrays, Integer and
Boolean variables.
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Variant 1 Variant 2
No Grammar Grammar G1

Cosyn CVC5 Cosyn+CVC5 CVC5
category p c l LOC R U T R U T R U T R U T
introductory 35 59 54 1089 24 8 3 21 5 9 23 8 3+1 20 5 10
sv-comp/locks 13 15 13 909 11 2 0 11 2 0 11 2 0 11 2 0
sv-comp/ntdrivers-simplified 7 8 4 7831 5 2 0 4 2 1 5 2 0 4 1 2
sv-comp/openssl-simplified 23 51 23 12893 5 18 0 4 1 18 5 18 0 4 1 18
tcas 34 64 0 8059 21 13 0 5 0 29 2 13 0+19 2 0 32
total 112 197 94 30781 66 43 3 45 10 57 46 43 23 41 9 62

Fig. 4: Results summary. For each category, the columns p, c, l and LOC represent the total
number of synthesis problems, conditions (after inlining), loops and lines-of-code, respectively.
For each tool, columns R and U represent the number of realizable and unrealizable problems
solved by the tool. T represents Timeout.

results (U column) when compared to COSYN alone. That is, column U in COSYN and
COSYN +CVC5 are identical.

The graphs in Figure 5 summarize runtime results on all examples. As evident by
these graphs, it is not only that COSYN solves more instances, it also performs better
w.r.t. runtime. Moreover, using COSYN in conjunction with CVC5 (Figure 5b), im-
proves CVC5’s performance significantly, allowing it to solve more instances in less
time. This shows that a SYGUS engine can greatly benefit from the addition of COSYN.

−10 0 10 20 30 40 50 60 70 80 90 100 110 120

10−2

100

102

104
CoSyn
CVC5

(a) No grammar

−10 0 10 20 30 40 50 60 70 80 90 100 110 120

10−2

100

102

104
CoSyn+CVC5

CVC5

(b) Grammar G1

Fig. 5: Runtime (seconds) comparison. X/Y-axis represent the synthesis problems and runtime,
respectively.

6 Related Work

As mentioned above, Syntax-guided synthesis (SyGuS) [1] is widely applicable and
many state-of-the-art program synthesis algorithms use the SyGuS framework [13,23,24,14,21,3].
Another significant framework is semantics-guided synthesis (SemGuS) [16], which in
addition to the specification and grammar, supplies a set of inference rules to define the
semantics of constructs in the grammar. This is implemented in the tool MESSY.

Similar to our work, the realizability of a SemGuS problem is reduced in MESSY to
a CHC satisfiability problem and a solution is extracted from a satisfying interpretation,
if one exists. However, the CHC satisfiability problem solved by MESSY and by COSYN
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are completely different. The query in MESSY intuitively asks whether the initial sym-
bol of the grammar can produce a term whose semantics coincide with the specification
for a particular, finite, set of inputs. In contrast, our CHC satisfiability problem en-
codes the computation of doomed states for a given non-deterministic program. It does
not encode any syntactic constraints, thus its unrealizability result is definite. Further,
COSYN ensures correctness for all inputs. However, COSYN is specific to the problem
of condition synthesis and cannot handle arbitrary synthesis problems.

Another synthesis approach is sketch-based synthesis [26], which allows to leave
holes in place of code fragments, to be derived by a synthesizer. However, the code
fragment that can be used to replace a hole in SKETCH is always limited in both struc-
ture and size. Therefore, if SKETCH finds the problem unrealizable, we can only con-
clude that there is no solution using the particular syntax. In contrast, our approach
does not restrict the generated conditions syntactically at all. Further, [26] only per-
forms bounded loop unwinding, while COSYN guarantees correctness for unbounded
computations. Another difference is that SKETCH interprets integer variables as fixed-
width bit-vectors while COSYN relies on SEAHORN, which treats integer variables
using integer semantics.

Finally, many synthesis and repair tools, including some mentioned above, use the
counterexample guided inductive synthesis (CEGIS) framework [26,20,5,16]. They ini-
tially find a solution for only a finite set of inputs I . If verification fails for input i ̸∈ I ,
then i is added to I and the process is repeated. However, the CEGIS process may di-
verge and may become very costly. COSYN does not require the CEGIS framework
since it directly solves the synthesis problem for all inputs.

Recently, several works focus mainly on unrealizability [11,12,8], while applying
SYGUS or CEGIS. In [15] a logic for proving unrealizability has been proposed. How-
ever, these works do not solve condition synthesis problems or take advantage of the
power of CHC solvers.

7 Conclusion

This work presents a novel approach to (un)realizability of condition synthesis, based
on a reduction to Constrained Horn Clauses (CHC). Our algorithm, COSYN, relies on
a central notion called doomed states. We encode into CHC the question of whether
the program includes an initial doomed state and exploit the encoding to determine
(un)realizability of the synthesis problem. A doomed initial state is returned as evi-
dence, if the problem is unrealizable. Otherwise, conditions are provided as evidence –
based on these conditions the program can be proved SAFE.

Our approach can handle any number of missing conditions in the program. Our
experiments show that COSYN can solve both realizable and unrealizable examples
efficiently, and can complement SyGuS tools.
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